Tool bit

Information

  • Patent Grant
  • 10022845
  • Patent Number
    10,022,845
  • Date Filed
    Wednesday, January 14, 2015
    10 years ago
  • Date Issued
    Tuesday, July 17, 2018
    6 years ago
Abstract
A tool bit includes a hexagonal drive portion, a working end made of a first material having a first hardness, and a shank interconnecting the drive portion and the working end. The shank is made of a second material having a second hardness, and the first hardness is higher than the second hardness.
Description
FIELD OF THE INVENTION

The present invention relates to tool bits, and more particularly to tool bits configured for interchangeable use with a driver.


BACKGROUND OF THE INVENTION

Tool bits, or insert bits, are often used with drivers configured to interchangeably receive the bits. For example, typical insert bits each include a hexagonal drive portion, a head or tip configured to engage a fastener, and a cylindrical shank connecting the drive portion and the tip. Drivers include a socket having a hexagonal recess in which the hexagonal drive portion of an insert bit is received and a stem or shank extending from the socket, which can be coupled to a handle for hand-use by an operator, or a power tool (e.g., a drill) for powered use by the operator. An interference fit between the hexagonal drive portion of the insert bit and the socket may be used to axially secure the insert bit to the driver, or quick-release structure may be employed to axially secure the insert bit to the driver.


SUMMARY OF THE INVENTION

The invention provides, in one aspect, a tool bit including a hexagonal drive portion, a working end made of a first material having a first hardness, and a shank interconnecting the drive portion and the working end. The shank is made of a second material having a second hardness, and the first hardness is higher than the second hardness.


The invention provides, in another aspect, a tool bit including a hexagonal drive portion, a working end made of a first material having a first hardness, and a shank interconnecting the drive portion and the working end. The shank includes a hollow core.


The invention provides, in yet another aspect, a method of manufacturing a tool bit. The method includes injecting a first material into a first portion of a mold to create a working end of the tool bit, and injecting a second material into a second portion of the mold to create a shank of the tool bit. The first material has a higher hardness than the second material.


The invention provides, in a further aspect, a tool bit including a hexagonal drive portion, a working end having a first hardness, and a shank interconnecting the drive portion and the working end. The shank has a second hardness, and the first hardness is higher than the second hardness.


Other features and aspects of the invention will become apparent by consideration of the following detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a tool bit in accordance with an embodiment of the invention.



FIG. 2 is a perspective view of a tool bit in accordance with another embodiment of the invention.



FIG. 3 is a perspective view of a tool bit in accordance with yet another embodiment of the invention.



FIG. 4 is a perspective view of a tool bit in accordance with a further embodiment of the invention.



FIG. 5 is a perspective view of a tool bit in accordance with another embodiment of the invention.



FIG. 6 is a perspective view of the tool bit of FIG. 5 with a working end of the bit removed.



FIG. 7 is a side view of the tool bit of FIG. 5.



FIG. 8 is a cross-sectional view of the tool bit of FIG. 5 through section line 8-8 in FIG. 7.



FIG. 9 is a front view of the tool bit of FIG. 5.



FIG. 10 is a rear view of the tool bit of FIG. 5.



FIG. 11 is a schematic of a process for manufacturing the tool bit of FIG. 5.





Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


DETAILED DESCRIPTION


FIG. 1 illustrates a tool bit 10 including a hexagonal drive portion 14, a working end, head, or tip 18 configured to engage a fastener, and a shank 22 interconnecting the drive portion 14 and the tip 18. The hexagonal drive portion 14 is intended to be engaged by any of a number of different tools, adapters, or components to receive torque from the tool, adapter, or component to rotate the bit 10. For example, the bit 10 may be utilized with a driver including a socket (not shown) having a corresponding hexagonal recess in which the hexagonal drive portion 14 of the bit 10 is received. The driver may also include a stem extending from the socket, which may be coupled to a handle for hand-use by an operator or to a chuck of a power tool (e.g., a drill) for powered use by the operator. A sliding, frictional fit between the hexagonal drive portion 14 of the bit 10 and the socket may be used to axially secure the bit 10 to the driver. Alternatively, a quick-release structure may be employed to axially secure the bit 10 to the driver. As shown in FIG. 1, the drive portion 14 of the bit 10 includes a groove 26 into which the quick-release structure (e.g., a ball detent) may be positioned to axially secure the bit 10 to the driver. Alternatively, the groove 26 may be omitted from the drive portion 14 of the bit 10 should a sliding frictional fit between the socket and the drive portion 14 be employed.


With continued reference to FIG. 1, the tip 18 of the bit 10 is configured as a Philips-style tip 18. Alternatively, the tip 18 may be differently configured to engage different style fasteners. For example, the tip 18 may be configured as a straight blade (otherwise known as a “regular head”) to engage fasteners having a corresponding straight slot. Other tip configurations (e.g., hexagonal, star, square, etc.) may also be employed with the bit 10.


In the illustrated embodiment of FIG. 1, different manufacturing processes can be used to impart a greater hardness to the tip 18 compared to the hardness of the shank 22. For example, the entire bit 10 can be heat treated to an initial, relatively low hardness level and then a secondary heat treating process can be applied only to the tip 18 to increase the hardness of the tip 18 to a relatively high hardness level to reduce the wear imparted to the tip 18 during use of the bit 10. Alternatively, in a different manufacturing process, the entire bit 10 can be heat treated to an initial, relatively high hardness level and then a secondary annealing process (e.g., an induction annealing process using an induction coil 28) can be applied to the shank 22 (and, optionally, the drive portion 14) to reduce the hardness of the shank 22 (and optionally the drive portion 14) to a relatively low hardness level to increase the torsional resiliency of the shank 22, and therefore its impact resistance, during use of the bit 10.


In operation of the bit 10, the concavity of the shank 22 is configured to increase the impact resistance or the toughness of the bit 10, such that the drive portion 14 and the shank 22 of the bit 10 are allowed to elastically deform or twist relative to the tip 18 about a longitudinal axis of the bit 10. Specifically, the polar moment of inertia of the shank 22 is decreased by incorporating the concavity, thereby reducing the amount of torsion required to elastically twist the shank 22, compared to a shank having a cylindrical shape. The reduced hardness of the shank 22 relative to the tip 18 further increases the impact resistance of the bit 10, compared to a similar bit having a uniform hardness throughout.



FIG. 2 illustrates a tool bit 10a in accordance with another embodiment of the invention, with like reference numerals with the letter “a” assigned to like features as the tool bit 10 shown in FIG. 1. Rather than using multiple heat treating processes to impart the desired hardness profile to the bit 10a, the tip 18a of the bit 10a is made of a first material having a first hardness, and the shank 22a of the bit 10a is made of a second material having a second, different hardness. The first and second materials are chosen such that the first hardness is greater than the second hardness. Accordingly, the hardness of the tip 18a is greater than the hardness of the shank 22a to reduce the wear imparted to the tip 18a during use of the bit 10a. The reduced hardness of the shank 22a relative to the tip 18a, however, also increases the impact-resistance of the bit 10a as described above.


In the particular embodiment of the bit 10a shown in FIG. 2, an insert molding process, such as a two-shot metal injection molding (“MIM”) process, is used to manufacture the bit 10a having the conjoined tip 18a and shank 22a made from two different metals. Particularly, the tip 18a is made of a metal having a greater hardness than that of the shank 22a and the drive portion 14a. Because the dissimilar metals of the tip 18a and the shank 22a, respectively, are conjoined or integrally formed during the two-shot MIM process, a secondary manufacturing process for connecting the tip 18a to the remainder of the bit 10a is unnecessary. The MIM process will be described in detail below. Alternatively, rather than using an insert molding process, the tip 18a may be attached to the shank 22a using a welding process (e.g., a spin-welding process).



FIG. 3 illustrates a tool bit 10b in accordance with yet another embodiment of the invention, with like reference numerals with the letter “b” assigned to like features as the tool bit 10 shown in FIG. 1. Rather than using different materials during the manufacturing process to create the tool bit 10b, the tip 18b includes a layer of cladding 42 having a hardness greater than the hardness of the shank 22b. Furthermore, the hardness of the cladding 42 is greater than the hardness of the underlying material from which the tip 18b is initially formed. The cladding 42 may be added to the tip 18b using any of a number of different processes (e.g., forging, welding, etc.). The addition of the cladding 42 to the tip 18b increases the wear resistance of the tip 18b in a similar manner as described above in connection with the bits 10, 10a.



FIG. 4 illustrates a tool bit 10c in accordance with a further embodiment of the invention, with like reference numerals with the letter “c” assigned to like features as the tool bit 10 shown in FIG. 1. At least one of the hexagonal drive portion 14c, the tip 18c, and the shank 22c is made using a three-dimensional printing process. With such a process, different materials (e.g., metals) can be used for printing the tip 18c and the shank 22c to impart a greater hardness to the tip 18c relative to the shank 22c to reduce the wear imparted to the tip 18c during use of the bit 10c. For example, the tip 18c of the bit 10c may be printed from a first material having a first hardness, and the shank 22c of the bit 10c may be printed from a second material having a second, different hardness. The first and second materials are chosen such that the first hardness is greater than the second hardness. The tip 18c and the shank 22c may be conjoined or integrally formed during the printing process. Alternatively, separate printing processes using different materials may be used and a secondary manufacturing process (e.g., welding, etc.) may be used for joining the tip 18c and the shank 22c.


In the illustrated embodiment shown in FIG. 4, the shank 22c is comprised of several individual strands 46 interconnecting the tip 18c and the drive portion 14c. Each of the strands 46 is offset from a longitudinal axis of the bit 10c in a radially outward direction, thereby creating a void between the collection of individual strands 46. Such a configuration of the shank 22c decreases the polar moment of inertia of the shank 22c, thereby reducing the amount of torsion required to elastically twist the shank 22c compared to a shank having a solid, cylindrical shape. The reduced hardness of the shank 22c relative to the tip 18c further increases the impact resistance of the bit 10c, compared to a similar bit having a uniform hardness throughout.



FIG. 5 illustrates a tool bit 10d in accordance with another embodiment of the invention, with like reference numerals with the letter “d” assigned to like features as the tool bit 10 shown in FIG. 1. The tool bit 10d includes a hollow core 30 that extends from a portion of the shank 22d adjacent the tip 18d, through the shank 22d, and towards the hexagonal drive portion 14d (FIG. 8). In the illustrated embodiment of the bit 10d, the hollow core 30 extends entirely through the hexagonal drive portion 14d, terminating in an opening 34 opposite from the tip 18d (FIGS. 5 and 8). Alternatively, the core 30 may terminate prior to reaching the distal end of the drive portion 14d. For example, the core 30 may extend entirely through the shank 22d, but only partially through the drive portion 14d. Or, the core 30 may terminate prior to reaching the drive portion 14d. As shown in FIG. 8, the hollow core 30 includes a substantially uniform diameter D1 along its length L1. The tool bit 10d includes a major longitudinal axis 38, which also defines a rotational axis of the tool bit 10d, that is collinear or coaxial with the hollow core 30. Alternatively, the hollow core 30 may terminate prior to reaching the end of the drive portion 14d opposite the tip 18d, so that the opening 34 is omitted. For example, in another embodiment of the tool bit, the hollow core 30 may coincide only with the shank 22d, with the length L1 of the hollow core 30 being substantially equal to that of the shank 22d.


For the two-inch bit 10d shown in FIG. 8, the length L1 of the hollow core 30 is about 1.45 inches to about 1.53 inches, with a nominal length L1 of about 1.49 inches. Furthermore, the diameter D1 of the hollow core 30 is about 0.100 inches to about 0.150 inches, with a nominal diameter D1 of about 0.125 inches. As a result, a ratio of the length L1 to the diameter D1 of the hollow core 30 is about 9.6:1 to about 15.3:1, with a nominal ratio of about 11.9:1. Alternatively, the ratio of the length L1 to the diameter D1 of the hollow core 30 may be greater than about 15.3:1 or less than about 9.1:1 to accommodate different size or length bits 10. In addition, the ratio of the total length of the two-inch bit 10d to the length L1 of the hollow core 30 is about 1.3:1 to about 1.4:1, with a nominal ratio of about 1.35:1. Alternatively, the ratio of the total length of the bit 10d to the length L1 of the hollow core 30 may be greater than about 1.4:1 or less than about 1.3:1 to accommodate different size or length bits 10.


With reference to FIG. 6, the tip 18d is omitted from the tool bit 10d exposing a protrusion 40 extending from the shank 22d and coaxial with the major longitudinal axis 38. As is described in greater detail below, the protrusion 40 facilitates manufacturing the tool bit 10d using the two-shot MIM process. The protrusion 40 defines a cylindrical shape having a fillet 48 and a chamfer 50 at opposite ends of the protrusion 40. Alternatively, the protrusion 40 may be differently configured as a cone, a semi-sphere, or the like. Further, the protrusion 40 may be configured with one or more radially extending keyways, splines, or teeth, or the protrusion 40 may be cylindrical yet offset from the longitudinal axis 38, to facilitate torque transfer between the shank 22d and the tip 18d. As a further alternative, the protrusion 40 may be formed on the tip 18d, and the shank 22d may be molded around the protrusion 40 thereby positioning the protrusion 40 within the core 30.


With reference to FIGS. 5-7, the shank 22d is defined by a peripheral surface 54 that extends between the working end 18d and the hexagonal drive portion 14d. The peripheral surface 54 defines a uniform diameter D2 of the shank 22d (FIG. 7). Alternatively, the shank 22d may be differently configured. For example, in another embodiment of the tool bit, the shank 22d may be configured to include a non-uniform diameter with a concave shape similar to the tool bits 10, 10a, and 10b.


The shank 22d includes slots 58 spaced about the peripheral surface 54 at 90 degree angular increments, with each of the slots 58 defining a minor longitudinal axis 62 (FIG. 7). The slots 58 extend radially with respect to the major longitudinal axis 38 between the hollow core 30 and the peripheral surface 54. Therefore, the slots 58 communicate the hollow core 30 with the ambient surroundings of the tool bit 10. Alternatively, the tool bit 10d may be configured with more or fewer than four slots 58, and the slots 58 may be located or dispersed about the shank 22d at different angular increments other than 90 degrees. For example, in an alternative embodiment of the tool bit 10d, the slots 58 may be omitted entirely and the presence of the hollow core 30 through the shank 22d is sufficient to provide the desired amount impact resistance to the bit 10d. For the two-inch bit 10d shown in FIG. 7, each of the slots 58 includes a length L2 of about 0.250 inches to about 0.350 inches, with a nominal length L2 of about 0.300 inches. Furthermore, the slots 58 include a width W of about 0.030 inches to about 0.100 inches, with a nominal width of about 0.065 inches. As a result, a ratio of the length L2 to the width W of the slots 58 is about 2.5:1 to about 11.7:1, with a nominal ratio of about 4.6:1. Alternatively, the ratio of the length L2 to the width W of the slots 58 may be greater than about 11.7:1 or less than about 2.5:1 to accommodate different size or length tool bits 10d. Regardless of the total length of the bit 10d, a length dimension L3 (FIG. 8) extending between a front end of the core 30 and the distal end of the tip 18d is about 0.38 inches to about 0.58 inches, with a nominal value of 0.48 inches.


With continued reference to FIG. 7, the slots 58 are oriented at an oblique angle β between the major longitudinal axis 38 and the minor longitudinal axis 62. The oblique angle β is about 0 degrees to about 20 degrees, with a nominal value of about 10 degrees. Alternatively, the oblique angle β may be greater than about 20 degrees to accommodate different size or length tool bits 10. In some embodiments, the oblique angle β may be zero degrees, thereby orienting the slots 58 parallel with the longitudinal axis 38. However, orienting the slots 58 with a positive value for angle β as shown in FIG. 7 causes the shank 22d to elongate as it twists (i.e., assuming application of torque to the drive portion 14d in a clockwise direction from the frame of reference of FIG. 10), thereby displacing the tip 18d toward the fastener as it is driven into a workpiece. Accordingly, the contact surface between the fastener head and the tip 18d may be increased simultaneously as the reaction torque applied by the fastener to the bit 10d is increased, reducing the likelihood that the tip 18d slips on the fastener head.


The hollow core 30 and the slots 58 in the tool bit 10d work in conjunction to increase the impact resistance or the toughness of the tool bit 10d, such that the tip 18d of the tool bit 10d is allowed to elastically deform or twist relative to the hexagonal drive portion 14d about the major longitudinal axis 38 of the tool bit 10d. Specifically, the polar moment of inertia of the shank 22d is decreased by incorporating the hollow core 30 and slots 58, thereby reducing the amount of torsion required to elastically twist the shank 22d, compared to a configuration of the shank having a solid cylindrical shape without the slots 58 (e.g., shanks 22, 22a, 22b).


In the illustrated embodiment of the tool bit 10d, the tip 18d made of a first material having a first hardness and the shank 22d is made of a second material having a second, different hardness. Particularly, the hardness of the tip 18d is greater than the hardness of the shank 22d to reduce the wear imparted to the tip 18d during use of the bit 10d. The reduced hardness of the shank 22d relative to the tip 18d, however, also increases the impact-resistance of the bit 10d. For example, the first hardness is about 55 HRC to about 65 HRC, with a nominal hardness of about 62 HRC, while the second hardness is about 40 HRC to about 55 HRC, with a nominal hardness of about 45 HRC. Therefore, a ratio between the first hardness and the second hardness is about 1:1 to about 1.7:1, with a nominal ratio of about 1.4:1. Alternatively, the ratio between the first hardness and the second hardness may be greater than about 1.7:1 to provide optimum performance of the tool bit 10d. The first and second materials are each comprised of a ferrous alloy composition, though different materials may alternatively be used.


As mentioned above, the two-shot metal MIM process is used to manufacture the bit 10d to make the conjoined tip 18d and shank 22d from two different materials. In other embodiments, the two-shot MIM process may be used to manufacture tool bits 10, 10a, 10b, and 10c. Particularly, in the illustrated embodiment of the tool bit 10d, the tip 18d is made from a material having a greater hardness than that of the shank 22d and the hexagonal drive portion 14d. Because the dissimilar materials of the tip 18d and the shank 22d, respectively, are conjoined or integrally formed during the two-shot MIM process, a secondary manufacturing process for connecting the tip 18d to the remainder of the bit 10d is unnecessary. Furthermore, the protrusion 40 provides a greater surface area between the tip 18d and the shank 22d so that the bond between dissimilar metals of the tip 18d and the shank 22d is stronger compared, for example, to using a flat mating surface between the tip 18d and the shank 22d. In addition, the protrusion 40 increases the shear strength of the bit 10d at the intersection of the tip 18d and the shank 22d.


With reference to FIG. 11, the two-shot MIM process includes in sequence a feedstock mixing process 70 to mix the first and the second materials 74, 78 with a binder composition 82, an injection molding process 86 using a mold 90, a debinding process 94 to eliminate the binder composition 82, and a heat treating process 98.


During the feedstock mixing process 70, the binder composition 82 is added to the first and the second materials 74, 78 to facilitate processing through the injection molding process 86. As a result, the first material 74, which is in a powder form, is homogeneously mixed with the binder composition 82 to provide a first feedstock mixture 102 of a determined consistency. In addition, the second material 78, which is also in a powder form, is also homogeneously mixed with the binder composition 82 to provide a second feedstock mixture 106 with substantially the same consistency as the first mixture 102. In the illustrated embodiment of the tool bit 10d, the binder composition 82 includes a thermoplastic binder. Alternatively, the binder composition 82 may include other appropriate binder compositions (e.g., wax). The amount of binder composition 82 in each of the first and second feedstock mixtures 102, 106 is chosen to match the shrink rates of the tip 18d and the drive portion 14d/shank 22d, respectively, during the sintering process 122 described below.


The injection molding process 86 includes processing the first and the second feedstock mixtures 102, 106 through an injection molding machine 134. Particularly, the process 86 includes injecting the first feedstock mixtures 102 into a first portion 110 of the mold 90, and injecting the second feedstock mixture 106 into a second portion 114 of the mold 90. In the illustrated embodiment shown in FIG. 11, the tip 18d of the tool bit 10d is generally formed in the first portion 110 of the mold 90, while the shank 22d and the drive portion 14d of the tool bit 10d are generally formed in the second portion 114 of the mold 90. Upon completion of the injection molding process 86, a temporary (otherwise known in the MIM industry as a “green”) tool bit 126 is produced that includes the first and the second materials 74, 78 and the binder composition 82. The “green” tool bit 126 is larger than the final tool bit 10d due to the presence of the binder composition 82.


The injection molding process 86 may be carried out in various ways to form the “green” tool bit 126. For example, the “green” tool bit 126 can be initially formed along the major longitudinal axis 38 from the hexagonal drive portion 14d to the tip 18, or from the tip 18d to the hexagonal drive portion 14d. Alternatively, the “green” tool bit 126 can be initially formed from a side-to-side profile as oriented in FIG. 7.


After the injection molding process 86, the “green” tool bit 126 is removed from the mold 90 and proceeds through the debinding process 94. The debinding process 94 eliminates the binder composition 82. During the debinding process 94, the “green” tool bit 126 transforms into a “brown” tool bit 130 (as it is known in the MIM industry) that only includes the first and the second materials 74, 78. In the illustrated embodiment, the debinding process 94 includes a chemical wash 118. Alternatively, the debinding process 94 may include a thermal vaporization process to remove the binder composition 82 from the “green” tool bit 126. The “brown” tool bit 130 is fragile and porous with the absence of the binder composition 82.


To reduce the porosity of the “brown” tool bit 130, the heat treating process 98 is performed to atomically diffuse the “brown” tool bit 130 to form the final tool bit 10d. The heat treating process 98 exposes the “brown” tool bit 130 to an elevated temperature to promote atomic diffusion between the first and the second materials 74, 78, allowing atoms of the dissimilar materials 74, 78 to interact and fuse together. The heat treating process 98 reduces the porosity of the “brown” tool bit 130 to about 95% to about 99% to yield the final tool bit 10d. In the illustrated embodiment, the heat treating process 98 includes a sintering process 122. Alternatively, the debinding process 94 and the heat treating process 98 may be combined as a single process such that, at lower temperatures, thermal vaporization will occur during the debinding process 94 to eliminate the binder composition 82. And, at higher temperatures, atomic diffusion will reduce the porosity in the “brown” tool bit 130 to yield the final tool bit 10d.


Various features of the invention are set forth in the following claims.

Claims
  • 1. A tool bit defining a longitudinal axis, the tool bit comprising: a hexagonal drive portion;a working end made of a first material having a first hardness; anda shank interconnecting the drive portion and the working end, wherein the shank includes a cylindrical outer periphery, a hollow core, and a plurality of radially extending elongated slots through the cylindrical outer periphery and in communication with the hollow core, wherein each elongated slot defines a width and a central axis perpendicular to the width;wherein the central axis of each elongated slot is obliquely angled relative to the longitudinal axis of the tool bit;wherein a circumferential distance separating adjacent elongated slots is greater than the width of each elongated slot; andwherein the shank is made of a second material having a second hardness, and wherein the first hardness is higher than the second hardness.
  • 2. The tool bit of claim 1, wherein the hollow core is coaxial with the longitudinal axis of the tool bit.
  • 3. The tool bit of claim 2, wherein the hollow core extends through the entire axial length of the shank.
  • 4. The tool bit of claim 3, wherein the hollow core extends through the entire axial length of the drive portion.
  • 5. The tool bit of claim 1, wherein the shank includes a protrusion extending within a portion of the working end.
  • 6. The tool bit of claim 1, wherein the plurality of elongated slots is positioned closer to the working end than the drive portion in a direction along the longitudinal axis of the tool bit.
  • 7. The tool bit of claim 1, wherein the first material and the second material include a ferrous alloy composition.
  • 8. The tool bit of claim 1, wherein the first hardness is between about 55 HRC and about 65 HRC.
  • 9. The tool bit of claim 1, wherein the second hardness is between about 40 HRC and about 55 HRC.
  • 10. A tool bit defining a longitudinal axis, the tool bit comprising: a hexagonal drive portion;a working end made of a first material having a first hardness; anda shank interconnecting the drive portion and the working end, wherein the shank includes a cylindrical outer periphery, a hollow core, and a plurality of radially extending elongated slots through the cylindrical outer periphery and in communication with the hollow core, wherein each elongated slot defines a width, a central axis perpendicular to the width, and a length;wherein the central axis of each elongated slot is obliquely angled relative to the longitudinal axis of the tool bit;wherein a circumferential distance separating adjacent elongated slots is greater than the width of each elongated slot; andwherein a ratio of the length of one of the plurality of elongated slots to the width of the one of the plurality of elongated slots is about 2.5:1 to about 11.7:1.
  • 11. The tool bit of claim 10, wherein the shank is made of a second material having a second hardness, and wherein the first hardness is higher than the second hardness.
  • 12. The tool bit of claim 11, wherein the first material and the second material include a ferrous alloy composition.
  • 13. The tool bit of claim 11, wherein the first hardness is between about 55 HRC and about 65 HRC.
  • 14. The tool bit of claim 11, wherein the second hardness is between about 40 HRC and about 55 HRC.
  • 15. The tool bit of claim 10, wherein the hollow core is coaxial with the longitudinal axis of the tool bit.
  • 16. The tool bit of claim 15, wherein the hollow core extends through the entire axial length of the shank.
  • 17. The tool bit of claim 16, wherein the hollow core extends through the entire axial length of the drive portion.
  • 18. The tool bit of claim 10, wherein the shank includes a protrusion extending within a portion of the working end.
  • 19. The tool bit of claim 10, wherein the plurality of elongated slots is positioned closer to the working end than the drive portion in a direction along the longitudinal axis of the tool bit.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/928,266 filed on Jan. 16, 2014, the entire content of which is incorporated herein by reference.

US Referenced Citations (230)
Number Name Date Kind
442710 Marsh Dec 1890 A
896443 Lund Oct 1907 A
876675 Albrecht Jan 1908 A
925115 Loewenberg Jun 1909 A
D59417 Graham Oct 1921 S
1645672 Van Saun Oct 1927 A
1776525 Talbot Sep 1930 A
1923132 Witkin Aug 1933 A
1932113 Long Oct 1933 A
1979460 Forsberg Nov 1934 A
1984839 Murray Dec 1934 A
2010616 Walsh Aug 1935 A
2022703 Banner Dec 1935 A
2216382 West et al. Oct 1940 A
2281631 West et al. Oct 1940 A
D218609 Bakeman Aug 1941 S
2307556 Wileman Jan 1943 A
2366682 West et al. Jan 1945 A
2400684 Clark May 1946 A
2410971 Hartley Nov 1946 A
2417225 West et al. Mar 1947 A
2445978 Stellin Jul 1948 A
D150800 Magnus, Jr. Aug 1948 S
2515839 Robertson Jul 1950 A
2522996 Cone Sep 1950 A
2523041 McKenzie Sep 1950 A
2537029 Cambern Jan 1951 A
2592978 Trimboli Apr 1952 A
2621688 Wales Dec 1952 A
2804894 Rosenburg Sep 1957 A
2820382 Smith Jan 1958 A
2833548 Clark May 1958 A
2964931 Sorenson Dec 1960 A
2969660 Dale et al. Jan 1961 A
3129571 Reynolds Apr 1964 A
3151512 Charczenko Oct 1964 A
3213719 Kloack Oct 1965 A
3237741 Potter et al. Mar 1966 A
3253626 Stillwagon, Jr. et al. May 1966 A
3331267 Tietge Jul 1967 A
3387669 Wise, Jr. et al. Jun 1968 A
3392793 Pauley Jul 1968 A
3393722 Windham Jul 1968 A
3419135 Millner Dec 1968 A
3592087 Pauley Jul 1971 A
3703916 Sundsten et al. Nov 1972 A
3753625 Fabrizio et al. Aug 1973 A
3888144 Parsons Jun 1975 A
3891017 Iskra Jun 1975 A
3916736 Clemens Nov 1975 A
3969810 Pagano Jul 1976 A
3985170 Iskra Oct 1976 A
4037515 Kesselman Jul 1977 A
4092753 Fuhrmann Jun 1978 A
4096896 Engel Jun 1978 A
4105056 Arnn Aug 1978 A
4197118 Wiech, Jr. Apr 1980 A
4215600 Kesselman Aug 1980 A
4246811 Bondhus et al. Jan 1981 A
4399723 Marleau Aug 1983 A
4409867 Lyden Oct 1983 A
4573839 Finnegan Mar 1986 A
4680996 Gold Jul 1987 A
4692073 Martindell Sep 1987 A
4705124 Abrahamson et al. Nov 1987 A
4710223 Matejczyk Dec 1987 A
4737332 Miyashita et al. Apr 1988 A
4765950 Johnson Aug 1988 A
4782574 Karcher et al. Nov 1988 A
4795598 Billiet Jan 1989 A
4800786 Arnold et al. Jan 1989 A
4825732 Arnold May 1989 A
4833951 Karcher et al. May 1989 A
4836059 Arnold Jun 1989 A
4838361 O'Toole Jun 1989 A
4852196 Martin Aug 1989 A
4884478 Lieser Dec 1989 A
4936170 Zumeta Jun 1990 A
4943403 Miyashita et al. Jul 1990 A
4947713 Arnold Aug 1990 A
4964907 Kiyota et al. Oct 1990 A
4982627 Johnson Jan 1991 A
5009841 Bloemacher et al. Apr 1991 A
5012708 Martindell May 1991 A
5012709 Su May 1991 A
5028367 Wei et al. Jul 1991 A
5031488 Zumeta Jul 1991 A
5059387 Brasel Oct 1991 A
5070750 Jones et al. Dec 1991 A
5079978 Kupfer Jan 1992 A
5122326 Jackson et al. Jun 1992 A
5140877 Sloan Aug 1992 A
5152642 Pitts et al. Oct 1992 A
5176050 Sauer et al. Jan 1993 A
5180042 Ogiso Jan 1993 A
5182973 Martindell Feb 1993 A
5199336 Wuilmart Apr 1993 A
5228250 Kesselman Jul 1993 A
5262122 Wiech, Jr. Nov 1993 A
5295423 Mikic Mar 1994 A
5295831 Patterson et al. Mar 1994 A
5299474 Hohmann et al. Apr 1994 A
5330230 Craig Jul 1994 A
5332537 Hens et al. Jul 1994 A
RE34680 Lieser Aug 1994 E
5338508 Nitta et al. Aug 1994 A
D350685 Perkins et al. Sep 1994 S
5353667 Wilner Oct 1994 A
5370021 Shigematsu Dec 1994 A
5380476 Matsushita et al. Jan 1995 A
5397531 Peiris et al. Mar 1995 A
D359335 Cartwright Jun 1995 S
5535867 Coccaro et al. Jul 1996 A
5613183 Wiech, Jr. Mar 1997 A
5619882 Godtner Apr 1997 A
5627258 Takayama et al. May 1997 A
5641920 Hens et al. Jun 1997 A
5676421 Brodsky Oct 1997 A
5704261 Strauch Jan 1998 A
5791212 Han Aug 1998 A
5819606 Arnold Oct 1998 A
5830287 Pinnow et al. Nov 1998 A
5868047 Faust et al. Feb 1999 A
D410372 Strauch Jun 1999 S
5950063 Hens et al. Sep 1999 A
5953969 Rosenhan Sep 1999 A
5957012 McCune Sep 1999 A
5984596 Fehrle et al. Nov 1999 A
6019022 Dotson Feb 2000 A
6032556 Hu Mar 2000 A
6047618 Pieri Apr 2000 A
6051184 Kankawa Apr 2000 A
6082227 Vogel Jul 2000 A
6089133 Liao Jul 2000 A
6093761 Schofalvi Jul 2000 A
RE36797 Eggert et al. Aug 2000 E
6098499 Pool Aug 2000 A
D431768 Feik Oct 2000 S
6138539 Carchidi et al. Oct 2000 A
6193242 Robison Feb 2001 B1
6204316 Schofalvi Mar 2001 B1
6234660 Hullmann et al. May 2001 B1
D445325 Fruhm Jul 2001 S
6257098 Cirone Jul 2001 B1
6302001 Karle Oct 2001 B1
6308598 O'Neil Oct 2001 B1
6332384 Cluthe Dec 2001 B1
6345560 Strauch et al. Feb 2002 B1
6352011 Fruhm Mar 2002 B1
D455627 Song Apr 2002 S
D455943 Lin Apr 2002 S
6376585 Schofalvi et al. Apr 2002 B1
6393950 Crosser May 2002 B1
6435065 Kozak et al. Aug 2002 B2
D462596 Fruhm Sep 2002 S
6490950 Ray et al. Dec 2002 B2
6520055 Reusch et al. Feb 2003 B1
6537487 Kuhns Mar 2003 B1
6547210 Marx et al. Apr 2003 B1
6547562 Kumar Apr 2003 B2
6666258 Kono Dec 2003 B1
6701814 Purkapile Mar 2004 B2
6733896 Dolan et al. May 2004 B2
6761093 Chang Jul 2004 B2
6792831 Crosser Sep 2004 B2
6883405 Strauch Apr 2005 B2
6988859 Borschert et al. Jan 2006 B2
7010998 Ying-Hao Mar 2006 B2
7028588 Shih Apr 2006 B2
7107882 Chang Sep 2006 B1
7117765 Wallden Oct 2006 B1
7143670 Geary Dec 2006 B2
7159493 Huang Jan 2007 B1
7168348 Holland-Letz Jan 2007 B2
7188556 Rinner Mar 2007 B1
7261023 Taguchi Aug 2007 B2
7331263 Erickson Feb 2008 B2
7437979 Wang Oct 2008 B1
D596003 Collier Jul 2009 S
D600525 Meng Sep 2009 S
7581470 Huang Sep 2009 B1
7662338 Tanaka Feb 2010 B2
7814815 Chen Oct 2010 B2
7882908 Koch et al. Feb 2011 B2
7959706 Tanaka Jun 2011 B2
D646139 Hsu Oct 2011 S
8028608 Sixto, Jr. Oct 2011 B2
8047260 Uno et al. Nov 2011 B2
8418587 DeBaker Apr 2013 B2
8468913 Bond Jun 2013 B1
8752455 Taylor, Jr. Jun 2014 B1
8955418 Peters Feb 2015 B2
20010001892 Hu May 2001 A1
20020046629 Borschert et al. Apr 2002 A1
20040007095 Meng Jan 2004 A1
20040099106 Strauch May 2004 A1
20040226419 Morgan Nov 2004 A1
20050028651 Crosser Feb 2005 A1
20050076749 Liu Apr 2005 A1
20050087045 Gryciuk et al. Apr 2005 A1
20050227772 Kletecka et al. Oct 2005 A1
20060027054 Wang Feb 2006 A1
20060130621 Novak et al. Jun 2006 A1
20060230887 Taguchi Oct 2006 A1
20060266163 Crosser Nov 2006 A1
20060286506 Birnholtz Dec 2006 A1
20070028728 Griffiths Feb 2007 A1
20070662382 Hu Mar 2007
20070131065 Shih Jun 2007 A1
20070207715 Webb Sep 2007 A1
20070227314 Erickson et al. Oct 2007 A1
20080034928 Sheu Feb 2008 A1
20080047401 Lu Feb 2008 A1
20080087142 Lin Apr 2008 A1
20080216616 Hsieh Sep 2008 A1
20080295650 Hsieh Dec 2008 A1
20100139099 Blaauw Jun 2010 A1
20100154587 Eason Jun 2010 A1
20100192736 Burch et al. Aug 2010 A1
20100269264 Huang Oct 2010 A1
20100275741 Lai Nov 2010 A1
20100288086 Huang Nov 2010 A1
20110189046 Bruhn et al. Aug 2011 A1
20110266068 Eason et al. Nov 2011 A1
20110283842 Lai Nov 2011 A1
20110315456 Lyons Dec 2011 A1
20120003056 Jaeger Jan 2012 A1
20130129435 Ortlund et al. May 2013 A1
20130145903 DeBaker Jun 2013 A1
20140318328 DeBaker Oct 2014 A1
Foreign Referenced Citations (46)
Number Date Country
686597 Feb 1998 AU
2181483 Jan 1994 CA
1245454 Feb 2000 CN
201070753 Jun 2008 CN
2231949 Feb 1973 DE
3907567 Sep 1989 DE
4207964 Sep 1993 DE
4300446 Jun 1994 DE
19614961 Feb 1997 DE
19622846 Dec 1997 DE
19628901 Jan 1998 DE
10123407 Jan 2002 DE
10144990 Feb 2003 DE
0221279 May 1987 EP
0267891 May 1988 EP
0279899 Aug 1988 EP
0467232 Jan 1992 EP
0336136 May 1992 EP
0610693 Aug 1994 EP
0675782 Oct 1995 EP
741633 Nov 1996 EP
963097 Jul 1964 GB
1476441 Jun 1977 GB
2000006037 Jan 2000 JP
2000024946 Jan 2000 JP
2000167775 Jun 2000 JP
2000167776 Jun 2000 JP
2000198081 Jul 2000 JP
2004142005 May 2004 JP
2004202665 Jul 2004 JP
2004237420 Aug 2004 JP
2005254406 Sep 2005 JP
2005254407 Sep 2005 JP
2006051563 Feb 2006 JP
2007111790 May 2007 JP
2008093799 Apr 2008 JP
WO 8908536 Sep 1989 WO
WO 9004498 May 1990 WO
WO 9414576 Jul 1994 WO
WO 9415755 Jul 1994 WO
WO 9520470 Aug 1995 WO
WO 9630167 Oct 1996 WO
WO 9912145 Mar 1999 WO
WO 2006094940 Sep 2006 WO
WO 2006100283 Sep 2006 WO
WO 2009029993 Mar 2009 WO
Non-Patent Literature Citations (6)
Entry
Vessel, “Problem Solvers are ready to go!” catalog, 5 pages, printed from web site www.vessel.jp/online/pro_b_bit.html on Sep. 11, 2008.
Robert Bosch Power Tool Corporation, catalog, 1982, 3 pages.
Black & Decker, Catalog 1(K), Sep. 26, 1960, 4 pages.
Black & Decker, catalog, 1947, 4 pages.
PCT/US2009/063515 International Search Report and Written Opinion dated Dec. 23, 2009 (10 pages).
Wera Tools, Bit Checks Bit and holder sets in a extremely compact format, <http://www-us.wera.de/product_detail_us.html?L=1&file=root_category_tools_for_power_use_bit_sets_bit-checks_8700-9_ph_btz&lang=en-US> webpage accessed Jan. 12, 2015, 2 pages.
Related Publications (1)
Number Date Country
20150196995 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61928266 Jan 2014 US