Example embodiments generally relate to containers for storing tools where such containers are capable of being lifted and, in particular, relate to a tool chest that is adapted to be lifted from above.
Tool chests are familiar sights from worksites to garages. The tool chest allows tools to be stored in an organized way, but also typically provides the ability to store the tools in a secure manner. Given the cost, mobility and utility of hand tools and power tools, the ability to securely store the tools can be very important. This is particularly true at worksites where tools may need to remain for a period of time.
Tools, either individually or collectively, may also need to be transportable in many cases. For a small business or a homeowner, placing the tool chest itself on wheels can be a solution for mobility of a group of tools over a relatively small distance. However, some tool chests may need to be transported to different worksites that are geographically distant, at elevated locations, or that may need to be loaded aboard ships or other large (and sometimes mobile) platforms.
For a large tool chest, providing mobility can be a difficult proposition. Lifting from below may not be practical, or may be dangerous. Meanwhile, the tool chest is typically not structured to facilitate lifting from above (such as with a crane). An easy solution may be to extend receptacles or hook eyes off the top of the tool chest. In particular, such receptacles may be bolted or welded onto the top of the tool chest to extend upward and above the top of the tool chest at respective ends or sides of the tool chest. These receptacles may allow chain or cable hooks to attach to the receptacles at the top of the chest (e.g., via a chain sling). However, such receptacles are exposed to bending or breaking, and may also make stacking or storing of multiple tool chests more difficult. Moreover, these receptacles may not meet standards or certifications relating to the ability to safely lift the tool chest in various different contexts.
Some example embodiments may enable the provision of a tool chest that prevents exposure of handles while the tool chest is not being lifted, but which are easily extendible from recessed portions on the side of the tool chest to allow lifting or other moving of the tool chest.
In an example embodiment, a tool chest is provided. The tool chest may include a base portion and two opposing sidewalls. The sidewalls may extend substantially perpendicularly upward from the base portion to define a tool repository between the sidewalls. Each of the sidewalls may include a lift-handle assembly that includes a first handle and a second handle. Each of the sidewalls may include at least one recessed portion configured to receive at least one of the first handle or the second handle. The first and second handles may be rotatable between a rest position and a transport position such that the at least one of the first handle or the second handle extends through a plane defined by one of the sidewalls when in the transport position and does not extend through the plane when in the rest position.
Having thus described some example embodiments in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Some example embodiments now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all example embodiments are shown. Indeed, the examples described and pictured herein should not be construed as being limiting as to the scope, applicability or configuration of the present disclosure. Rather, these example embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout. Furthermore, as used herein, the term “or” is to be interpreted as a logical operator that results in true whenever one or more of its operands are true. As used herein, operable coupling should be understood to relate to direct or indirect connection that, in either case, enables functional interconnection of components that are operably coupled to each other.
As indicated above, some example embodiments may relate to the provision of a tool chest that prevents exposure of handles while the tool chest is not being lifted by having the handles recessed into sides of the tool chest. However, the recessed handles are rotatable from a rest position to a transport position in which the handles are extended from the sides of the tool chest to allow lifting or other moving of the tool chest. Two particular examples will be shown to illustrate two different designs for implementation of the recessed handles. However, it will be appreciated that example embodiments are not necessarily limited to the specific examples disclosed.
Referring first to
Generally speaking, the tool chest 100 shown in
The base portion 110 may generally form the bottom of the tool chest 100. The base portion 110 of this example includes feet 112, which are made of sheet metal that is formed to enable the feet 112 to support the weight of the tool chest 100. The feet 112 may be provided at respective corners of the base portion 110 and at any other suitable locations in between to properly support the tool chest 100.
The lid 120 of this example includes a top portion 122 and a front portion 124 which can fold at the intersection therebetween. Meanwhile, the lid includes a hinge 126 that operably couples the lid 120 to the top of the rear wall 160. The lid 120 can be folded and opened to the position shown in
As shown in
The first and second lift-handle assemblies 132 and 142 are each provided in respective recessed portions (e.g., first recessed portion 134 and second recessed portion 144) formed in the first sidewall 130 and second sidewall 140, respectively. The first and second recessed portions 134 and 144 form recessed receptacles into which the handles of the first and second lift-handle assemblies 132 and 142 can entirely fold in the rest position. Thus, when in the rest position, no part of the first and second lift-handle assemblies 132 and 134 extends beyond the planes formed by the first sidewall 130 and the second sidewall 140, respectively. However, when the first and second lift-handle assemblies 132 and 144 are extended to the transport position (as shown in
Referring now to
The tool chest 200 shown in
The base portion 210 may generally form the bottom of the tool chest 200, and may include feet 212 similar to those described above. The lid 220 may include a hinge 226 that operably couples the lid 220 to the top of the rear wall 260. The lid 220 can be lifted and opened to the position shown in
As shown in
The first and second lift-handle assemblies 232 and 242 are each provided in respective recessed portions (e.g., first recessed portion 234 and second recessed portion 244) formed in the first sidewall 230 and second sidewall 240, respectively. The first and second recessed portions 234 and 244 form recessed receptacles into which the handles of the first and second lift-handle assemblies 232 and 242 can entirely fold in the rest position. Thus, when in the rest position, no part of the first and second lift-handle assemblies 232 and 242 extends beyond the planes formed by the first sidewall 230 and the second sidewall 240, respectively. However, when the first and second lift-handle assemblies 232 and 242 are extended to the transport position (as shown in
As shown in
The sidewalls 322 of some example embodiments may form an obtuse angle relative to the portion of the back wall 320 that supports the first and second handles 310 and 312. The sidewalls 322 form an acute angle relative to the portion of the plane in which the first sidewall 130 lies where such plane covers the first and second handles 310 and 312. Thus, the sidewalls 322 of each of the first and second pockets 300 and 302 are formed as four separate slanted walls that extend between the first sidewall 130 and the back wall 320. In some embodiments, the slopes of all of the sidewalls 322 may be equal, and each sidewall 322 may engage its adjacent sidewalls to form an angled corner and define the first and second pockets 300 and 302. The single pocket of the second example embodiment is formed in a similar fashion. However, it should be appreciated that the sidewalls 322 could be formed at substantially right angles to the back wall 320 (and the first or second sidewall 130/140).
In an example embodiment, the first and second pockets 300 and 302 are positioned as far upward as possible. Thus, for example, the first and second pockets 300 and 302 are positioned as high up on the first sidewall 130 as the location of the frame members 102 will allow. The first and second pockets 300 and 302 may also be positioned as far rearward and forward as possible, respectively. In an example embodiment, the first and second pockets 300 and 302 may therefore be immediately adjacent to the top frame member and the rear or front frame member. This positioning may provide additional strength and support for the lifting points defined within the first and second pockets 300 and 302. In the second example embodiment (i.e., where only the single pocket is employed), the single pocket may extend entirely between the highest and forward/rearward-most possible locations on the sidewalls so that a single back wall lies proximate to both the first and second handles 310 and 312.
In the first example embodiment, the first and second handles 310 and 312 may be substantially centered on the back wall 320. However, in the second example embodiment, the first and second handles 310 and 312 may be disposed to be centered between top and bottom sidewalls of the single pocket, but may be positioned proximate to respective rear and front edges of the single back wall. In some embodiments, a horizontal plane and a vertical plane may be passed through the longitudinal centerline of the tool chest (100 or 200). The first and second handles 310 and 312 may be spaced apart from both the vertical plane and the horizontal plane by distances greater than the distance separating the first and second handles 310 and 312 from the front and rear edges and from the top edges of the tool chest (100 or 200), respectively. Moreover, in some cases, the first and second handles 310 and 312 may be disposed in a range of vertical positions at between 5% and 25% of the height of the tool chest (100 or 200) from the top of the tool chest (100 or 200). Similarly, the first and second handles 310 and 312 may be placed at horizontal positions that are between 5% and 40% of the width of the tool chest (100 or 200) from the respective front and rear edges of the tool chest (100 or 200). This arrangement may maximize the distance of the handles above and forward/rearward of the center of gravity of the tool chest (100 or 200) and provide improved stability during lifting operations.
Each of the first and second handles 310 and 312 may include an engagement portion 330 (or cross bar) that extends between distal ends of pivot plates 340 that extend parallel to each other. The pivot plates 340 may each lie in planes that are perpendicular to the plane of the first sidewall 130 are pivotally coupled to an axis 350 to rotate about the axis 350. The axis 350 may be formed of a bar or axle that is rotatable in a sheath that may, for example, be welded to the back wall 320. However, other structures are also possible.
The pivot plates 340 may be substantially flat, plate-like structures that are rotatably coupled to the axis 350 at their proximal ends and operably coupled to the engagement portion 330 at their distal ends. Thus, the distance between the pivot plates 340 may be defined by the length of the engagement portion 330. The pivot plates 340 may rotate about the axis 350 between the rest position of
In order to limit the movement of the pivot plates 340 to provide the desired angular difference between orientation of the first and second handles 310 and 312 in the rest position and the transport position, the pivot plates 340 may each be provided with a stopping member 360 at their respective proximal ends. The stopping member 360 may protrude away from the back wall 320 when the first and second handles 310 and 312 are in the rest position. However, when the first and second handles 310 and 312 are rotated to the transport position (i.e., 90 degrees away from the rest position, the stopping member 360 may impact the back wall 320 to stop further rotation of the pivot plates 340. The stopping member 360 may also provide reinforcement of the pivot plate 340 to allow the weight of the tool chest 100 to be borne by the first and second handles 310 and 312 in the transport position (as shown in
In an example embodiment, a tool chest is provided. The tool chest may include a base portion and two opposing sidewalls. The sidewalls may extend substantially perpendicularly upward from the base portion to define a tool repository between the sidewalls. Each of the sidewalls may include a lift-handle assembly that includes a first handle and a second handle. Each of the sidewalls may include at least one recessed portion configured to receive at least one of the first handle or the second handle. The first and second handles may be rotatable between a rest position and a transport position such that the at least one of the first handle or the second handle extends through a plane defined by one of the sidewalls when in the transport position and does not extend through the plane when in the rest position.
The tool chest may be modified or augmented with additional (optional) features. For example, in some cases, the at least one recessed portion may include a first pocket corresponding to the first handle and a second pocket, spaced apart from the first pocket, the second pocket corresponding to the second handle. Additionally, in some cases, the first and second pockets may each be defined at least in part by a back wall that lies in second plane parallel to the plane defined by the one of the sidewalls, where the first and second handles are each centered on the back wall of respective ones of the first pocket and the second pocket. Additionally or alternatively, the first and second pockets may be further defined by pocket sidewalls that each form an angle relative to the back wall and the sidewalls of the tool chest. Additionally or alternatively, a depth of each of the first and second pockets is greater than a width of the first and second handles. Instead of multiple pockets, some example embodiments may be designed such that the at least one recessed portion includes a single pocket inside which both the first handle the second handle are provided. In such an example, the single pocket may be defined at least in part by a back wall that lies in second plane parallel to the plane defined by the one of the sidewalls, where the first and second handles are each rotatably coupled to the back wall. Additionally or alternatively, the single pocket may be further defined by pocket sidewalls that each form an angle relative to the back wall and the one of the sidewalls of the tool chest. Additionally or alternatively, a depth of the single pocket is greater than a width of the first and second handles. Additionally or alternatively, the tool chest may be defined at least in part by frame members disposed inside the sidewalls to support the sidewalls. In such an example, the at least one recessed portion may be defined proximate to a top of the tool chest and proximate to front and rear edges of the sidewalls. Additionally or alternatively, the at least one recessed portion may be spaced apart from the top of the tool chest and the front and rear edges of the sidewalls by a width of corresponding ones of the frame members. Additionally or alternatively, the first and second handles may be disposed proximate to a top of the tool chest and proximate to front and rear edges of the sidewalls. Additionally or alternatively, the first and second handles may each include an engagement portion, pivot plates disposed on opposite ends of the engagement portion, the engagement portion being provided at a distal end of the pivot plates, and an axis about which the pivot plates rotate, where the pivot plates are pivotally coupled to the axis at a proximal end of the pivot plates. In such an example, the engagement portion may be located within the at least one recessed portion in the rest position, and extends outside the at least one recessed portion in the transport position. Additionally or alternatively, the pivot plates may each include a stopping member disposed at the proximal end of the pivot plates. Additionally or alternatively, the at least one recessed portion may be defined at least in part by a back wall that lies in second plane parallel to the plane defined by the one of the sidewalls, and the stopping member may be disposed at a side of each of the pivot plates that faces away from the back wall. Additionally or alternatively, the stopping member may include a protrusion that does not contact the back wall in the rest position and contacts the back wall in the transport position. Additionally or alternatively, the stopping member may prevent movement of the first and second handles beyond about ninety degrees from the rest position when the first and second handles are moved to the transport position. Accordingly, for example, the first and second handles are extendable in the transport position to engage a lifting apparatus (e.g., a chain sling or hooks thereof) at lifting points farther apart from each other than a longitudinal length of the tool chest.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. In cases where advantages, benefits or solutions to problems are described herein, it should be appreciated that such advantages, benefits and/or solutions may be applicable to some example embodiments, but not necessarily all example embodiments. Thus, any advantages, benefits or solutions described herein should not be thought of as being critical, required or essential to all embodiments or to that which is claimed herein. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3811747 | Levin | May 1974 | A |
4288134 | Knaack | Sep 1981 | A |
4936476 | Dinsmoor | Jun 1990 | A |
4982860 | Dinsmoor | Jan 1991 | A |
6581796 | Pilkinton | Jun 2003 | B1 |
7419037 | Nordstrom | Sep 2008 | B2 |
7494011 | Henssler | Feb 2009 | B2 |
8342580 | Cowie | Jan 2013 | B2 |
20020101045 | Schmidt | Aug 2002 | A1 |
20070240462 | James | Oct 2007 | A1 |
20140312757 | Bridges | Oct 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20170190472 A1 | Jul 2017 | US |