Tool comprising a damping and/or opening spring

Information

  • Patent Grant
  • 6263770
  • Patent Number
    6,263,770
  • Date Filed
    Thursday, February 25, 1999
    26 years ago
  • Date Issued
    Tuesday, July 24, 2001
    24 years ago
Abstract
A tool having relatively movable working elements which are movable with respect to one another by relative movement of a pair of arms or handles wherein a spring element formed from a material consisting of a flexible polymer or elastomer is secured intermediate the arms to thereby provide a damping force opposing selectively movement of the arms toward one another.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a tool, of the type comprising an arm or handle which has a metal part and which, when the tool is used, is brought closer to an element opposite, particularly consisting of a base or of another arm or handle of the tool, and a damping and/or opening spring.




2. Discussion of the Related Art




The invention applies particularly to the various types of pliers (flat-nose or round-nose pliers, so-called combination pliers, side cutters, etc.), to secateurs and to tools comprising a relatively long arm or lever articulated by one end to a base, such as shears, guillotines, ricers, etc.




SUMMARY OF THE INVENTION




The object of the invention is to provide a damping and/or opening spring which, although particularly economical, can be passed on in varying forms suited to predetermined behaviour during use of the tool, and which can also act as a member for positioning and/or limiting the extent of opening of the arm with respect to the element opposite.




To this end, the subject of the invention is a tool of the aforementioned type, characterized in that the spring comprises a spring-forming part based on flexible polymer or elastomer, which flexes and/or compresses as the said arm is brought closer, and the ends of which are secured respectively to the arm and to the element opposite.











DESCRIPTION OF THE DRAWINGS




Exemplary embodiments of the invention will now be described with reference to the appended drawings, in which:





FIG. 1

is a view, in part section, of a pair of flat-nose pliers in accordance with the invention;





FIGS. 2 and 3

are views in section, respectively, along lines II—II and III—III of

FIG. 1

;





FIG. 4

is a view similar to

FIG. 1

of a pair of round-nose pliers constituting an alternative form;





FIG. 5

is a partial view with part section of another embodiment;





FIG. 6

is a view in section along line VI—VI of

FIG. 5

;





FIG. 7

is a view similar to

FIG. 5

of an alternative form;





FIG. 8

depicts, in longitudinal section, the spring for the pliers of

FIG. 7

;





FIG. 9

is a view similar to

FIG. 5

of another embodiment;





FIG. 10

is a view similar to

FIG. 1

of a pair of combination pliers in another embodiment of the invention;





FIG. 11

is a view similar to

FIG. 1

of a pair of side cutters according to another embodiment of the invention;





FIG. 12

depicts another pair of side cutters according to the invention;





FIG. 13

depicts the spring for the pliers of

FIG. 12

;





FIG. 14

depicts in perspective the spring for the pliers of

FIGS. 1 and 4

;





FIGS. 15

to


20


depict various profiles forming alternative versions of the spring of

FIG. 16

;





FIG. 21

is a perspective view of yet another spring according to the invention; and





FIG. 22

depicts the profile of another embodiment of the spring in accordance with the invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

depicts a pair of flat-nose pliers


1


consisting of two metal limbs


2


, two sheaths


3


and a spring


4


.




Each metal limb


2


defines a handle arm


5


and a flat nose


6


, the two limbs


2


being articulated to one another in the manner of a pair of scissors in an intermediate region or joint


7


, in the conventional way, by means of a rivet or the like, not depicted.




Each sheath


3


is a molded plastic component which, starting from its distal end, exhibits a blind passage


8


which fits snugly over a handle arm


5


.




As can be seen in

FIGS. 1 and 2

, over a limited length from its distal end, each passage


8


is enlarged towards the mid-plane P of the pliers, that is to say towards the other handle, by a lateral gusset


9


of rectangular cross section.




In the example depicted, the passage


8


has a more or less semicircular cross section and the diameter of the semicircle forms a long side of the rectangular cross section of its gusset


9


.




The spring


4


is depicted in perspective in FIG.


14


.




It consists of a strip of thermoplastic, for example polyacetal, or of vulcanized or thermoplastic elastomer. This strip has a rectangular cross section of constant width l, with a central region


10


whose thickness e


1


is greater than the thickness e


2


of each end part


11


.




When the spring is in the as-fitted condition, each part


11


, which forms a part for attaching the spring, fits with a small amount of clearance into a gusset


9


, the part


10


facing away from the joint


7


.




Thus each part


11


is in contact, on the one hand, with the inner face of the arm


5


and, on the other hand, with the three walls of the gusset


9


, and it is pushed into this gusset until the shoulder


12


which separates it from the central part


10


presses on the mouth of the gusset.




Thus, at rest, the spring


4


tends to resume its original planar configuration, and therefore urges the two arms


5


towards their wide open position, or even as far as this position, as depicted in FIG.


1


.




When the user brings the arms


5


closer together, he causes the thick part


10


to bend against its elastic straightening force.




It will be understood that the stiffness of the spring


4


can be adjusted through the choice of length and thickness of the spring-forming part


10


.




Furthermore, the spring


4


, being made of an insulating material and forming a bridge between the sheaths


3


which are themselves insulating, provides the user's fingers with good protection against electric shock.




In the alternative form of

FIG. 4

, applied to a pair


1


A of round-nose


6


A pliers, the blind gussets


9


start from a point some way along the sheath


3


, which at this point has an internal lateral opening


13


, and they extend towards the distal end of the sheath, as far as a short distance from this end.




As an alternative, the gussets


9


may also open onto the distal end of the sheath.




The spring


4


is the same as before, but its central part


10


has an increase in thickness towards the joint


7


. Consequently, each attachment part


11


is introduced into the associated gusset


9


until the shoulder


12


presses against the distal edge of the opening


13


.




As before, bringing the arms


5


closer together stresses the spring


4


in bending, and this spring tends to straighten itself and return the pliers to or towards their wide open position of FIG.


4


.




In the example


1


B of

FIGS. 5 and 6

, the sheath


3


has on its inside an increase in thickness


14


which ends in a shoulder


15


a certain distance from the distal end of the sheath. Projecting from this shoulder is a cylindrical stud


16


. The spring


4


B is a tube made of flexible plastic, for example of circular cross section, the end parts


11


B of which fit with a small amount of clearance onto the stud


16


until they press against the shoulder.




The tube is then externally in contact with the arm


5


. Its central spring-forming part


10


B has, as was the case in

FIG. 1

, a bowed shape with the concave side away from the joint


7


, and it tends to straighten itself, thereby opening the pliers.




The alternative form


1


C in

FIGS. 7 and 8

differs from the previous one in the following two respects.




On the one hand, the stud


16


projects towards the proximal end of the sheath, in an inside lateral recess


17


thereof, the shoulder


15


being defined on a distal end part


18


of this sheath.




On the other hand, the spring-forming central part


10


C of the spring


4


C has the shape of a solid rod, while the two end parts


11


C, of the same external cross section, are tubular and fit as before onto the studs


16


until they press on the shoulders


15


.




Choosing a tubular


4


B or partially tubular


4


C spring, in each of the configurations of

FIGS. 5 and 7

, makes it possible to define the stiffness of the spring.





FIGS. 9

to


11


illustrate three other embodiments of the invention.




In the case of

FIG. 9

, the spring-forming part


10


B of the spring


4


D is a bow, the concave side of which faces away from the joint


7


and which is moulded integrally with the two sheaths


3


.




As an alternative, the concave side could, of course, face the joint, as depicted in chain line.




The examples of

FIGS. 10

to


12


make it possible to obtain at least two different spring stiffnesses while the two arms


5


are being brought closer together.




In the pliers


1


G of

FIG. 10

, which are depicted as combination pliers, the spring


4


G differs from the spring


4


in

FIG. 1

in that its intermediate part


10


G is in the shape of a Ω and extends right up close to the joint


7


.




Consequently, as the arms


5


start to be brought closer together, the two lower or proximal legs


23


of the Ω are straightened out downwards, which causes a relatively weak initial elastic effect. Next, the top of the Ω comes into contact against the joint


7


, and continuing to bring the arms


5


closer together not only continues to straighten out the legs of the Ω but also begins to flatten its loop. The spring stiffness is thus increased.




In the embodiment of

FIG. 11

, applied to side cutters


1


H, use is made of the spring


4


A of

FIG. 4

, deformed by pushing its central part


10


A towards the joint


7


, which gives the spring a W shape.




As the two arms


5


start to be brought closer together, the spring therefore experiences threefold bending, at the points


24


to


26


, which provides a first stiffness, greater than that of the spring


4


A of FIG.


4


. Next, the central part


10


A is trapped, folded, between the inner faces of the two sheaths


3


, just before the pliers are fully closed. Closure is therefore completed while at the same time compressing the plastic elastomer on itself, which produces distinctly stronger elastic resistance.




The effect thus obtained is one of damping the final manual effort, which avoids the user feeling a jolt in his hand when cutting through a metal wire or the like.




As depicted in chain line in

FIG. 11

, it is possible to envisage using the same spring


4


A in the W configuration and in the simply bowed shape of

FIG. 4

, either in different pairs of pliers or in the same pair of pliers. The user can therefore choose a single stiffness or two successive stiffnesses for each use of the pliers.




As an alternative, one or all of the curvatures of the spring may be reversed, like in

FIG. 1

, it then being possible for the spring to adopt an M shape.




Also an alternative, if, in the W- or M-shaped configuration, the central part


10


A is not trapped at the end of closure, the user may simply choose between a low stiffness (bowed shape) and a greater stiffness (W or M shape).




A similar effect of two successive stiffnesses is achieved using the side cutters


1


I of

FIG. 12

, in which the spring


4


I depicted alone in

FIG. 13

, is a strip of plastic or elastomer which close to each end has an aperture


27


which fits over an arm


5


and is placed just before the distal end of the sheath


3


. The spring thus has the overall shape of a pair of spectacles. The central part


10


I is bent into a V.




During the first part of the travel of bringing the arms


5


closer together, the part


10


I is stressed in bending, which produces relatively weak elastic resistance.




Shortly before the fully closed position, as depicted in

FIG. 12

, the part


10


I, completely folded, is trapped between the distal ends of the two sheaths


3


, and this causes the material of the spring to be compressed onto itself and produces greater elastic resistance.




As an alternative, as shown in chain line in

FIGS. 12 and 13

, the end parts


11


I of the spring


10


I may be extended to form external guards


28


for the user's fingers. In this case, the parts


11


I may be curved and shaped to fit in with the appearance of the distal part of the sheaths


3


.





FIGS. 15

to


22


depict, in side view, the profiles of various springs which can be fitted to the pliers


1


or


1


A of FIGS.


1


and


4


:




FIG.


15


: the central part


10


has an increase in thickness on both sides of the spring;




FIGS.


16


and


17


: the central part


10


is domed and meets the attachment parts


11


with a continuous curvature, without forming a shoulder. The increase in thickness may be on both sides (

FIG. 16

) or on just one side (FIG.


17


);





FIGS. 18

to


20


: the central part


10


is connected to the end parts


11


by undercut shoulders (FIG.


18


), or alternatively sloping shoulders (FIG.


19


), or alternatively by two rounded portions (FIG.


20


);




FIG.


21


: the central part


10


J of the spring


4


J has a cutout


29


mid-way along its length, so that beginning to fold this part


10


J provides relatively weak elastic resistance then, when the flanks of the cutout


29


come into mutual contact, the elastic resistance is markedly increased;




FIG.


22


: the central part


10


K of the spring


4


K has a greater thickness at its two ends


30


than at any intermediate point. Consequently, as the arms


5


are brought closer together, there is first of all a simple bending of the part


10


(relatively weak elastic resistance), then, when the ends


30


come into mutual contact, there is compression of the material of the spring (markedly greater elastic resistance).




In alternative forms which have not been depicted, the spring-forming part can be over molded onto one or both attachment parts made of some other material, particularly a metallic one.



Claims
  • 1. A tool comprising two elongate members pivoted together to thereby define opposing and relatively movable working elements and arms which are movable relatively closer to one another by a first distance to move said working elements relative to one another, each arm having an outer end and a base portion spaced from said outer end, a damping spring element mounted between said arms, said spring element including a flexible material selected from a group of materials consisting of polymers and elastomers, said flexible material having a first elastic resistance to movement of said arms relative to one another along a first portion of said first distance and a second greater resistance to movement of said arms relative to one another along a second portion of said first distance.
  • 2. Tool according to claim 1 wherein said spring element has a central portion from which extends opposite relatively movable segments, said spring element being configured to bend at said central portion as said arms are moved relatively to one another along said first portion of said first distance and such that said opposite relatively movable segments engage one another as said arms are moved relative to one another along said second portion of said first distance.
  • 3. Tool according to claim 2 wherein a thickness of the spring element is greater at said outer relatively movable segments than at any other point along a length thereof.
  • 4. Tool according to claim 1 wherein the spring element has a cutout located at a central portion thereof.
  • 5. Tool according to claim 2 wherein said spring element is mounted to said arms so that said central portion thereof engages at least one of said arms adjacent a pivot point between said elongate members as said arms are moved relative to one another along said first distance.
  • 6. Tool according to claim 2 wherein the spring element is selected from a group of shapes consisting of “W” and an “M”.
  • 7. Tool according to claim 2 wherein the spring element is bowed.
  • 8. Tool according to claim 2 wherein said spring element includes opposite ends extending from said opposite relatively movable segments, and means for securing said ends to said arms at said base portions thereof.
  • 9. Tool according to claim 8, wherein the spring element is integrally formed.
  • 10. Tool according to claim 8, wherein said means for securing includes said opposite ends of said spring element being formed integrally with sheath members secured over said arms.
  • 11. Tool according to claim 8, wherein said opposite ends are not as thick as said movable segments, said means for securing includes a sheath fitted over each arm, and said opposite ends of said spring element being seated within gussets formed in each sheath.
  • 12. Tool according to claim 8, wherein said means for securing includes each of said opposite ends of said spring element including a ring portion designed to grip around an adjacent arm.
  • 13. Tool according to claim 12, wherein the spring element is in the overall shape of a pair of spectacles.
  • 14. Tool according to claim 12, wherein said opposite ends extend from said arms to form external guards for a user's fingers.
  • 15. Tool according to claim 8, wherein said means for securing includes said opposite ends being tubular and of a size to engage about a stud secured to each of said arms.
  • 16. Tool according to claim 15, wherein the spring element is tubular.
  • 17. A tool comprising two elongated members which are pivotally secured to one another to thereby define opposing and relative movable working elements and arms which are relatively movable toward and away from one another, a damping spring element including a flexible material formed from a group of materials consisting of polymers and elastomers, said spring element including a central portion and outwardly extending relatively movable segments extending from said central portion, said spring element including opposite ends extending from said relatively movable segments and said opposite ends being integrally formed with sheathes which are mounted about said arms.
  • 18. A tool comprising two elongated members which are pivotally secured to one another to thereby define oppositely and relatively movable working elements and arms which are relatively movable toward and away from one another, a damping spring element including a flexible material formed from a group of materials consisting of polymers and elastomers, said spring element including a central portion and outwardly extending relatively movable segments extending from said central portion, sheath elements mounted about each of said arms, a gusset formed in each of said sheath elements, said spring element including outer ends extending from said relatively movable segments which are mounted within said gussets, and said outer ends of said spring element being of reduced thickness with respect to said relatively movable segments.
  • 19. The tool of claim 1 wherein said damping spring element is configured to bend as said arms are moved along said first portion of said first distance and thereafter being compressed as said arms are moved along said second portion of said first distance.
Priority Claims (1)
Number Date Country Kind
98 02436 Feb 1998 FR
US Referenced Citations (7)
Number Name Date Kind
3458933 Rogers Aug 1969
3583264 Brunosson et al. Jun 1971
3921478 Ygfors Nov 1975
4304158 Brunosson et al. Dec 1981
5522289 Eggert Jun 1996
5522290 Visser et al. Jun 1996
5603643 Krivec Feb 1997
Foreign Referenced Citations (1)
Number Date Country
1443913 Jul 1976 GB