Embodiments of the present disclosure generally relate to equipment and methods for coupling a top drive to one or more tools to facilitate data and/or signal transfer therebetween. The coupling may transfer both axial load and torque bi-directionally from the top drive to the one or more tools. The coupling may facilitate data and/or signal transfer, including tool string and/or downhole data feeds such as mud pulse telemetry, electromagnetic telemetry, wired drill pipe telemetry, and acoustic telemetry.
A wellbore is formed to access hydrocarbon-bearing formations (e.g., crude oil and/or natural gas) or for geothermal power generation by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tool string. To drill within the wellbore to a predetermined depth, the tool string is often rotated by a top drive on a drilling rig. After drilling to a predetermined depth, the tool string and drill bit are removed, and a string of casing is lowered into the wellbore. Well construction and completion operations may then be conducted.
During drilling and well construction/completion, various tools are used which have to be attached to the top drive. The process of changing tools is very time consuming and dangerous, requiring personnel to work at heights. The attachments between the tools and the top drive typically include mechanical, electrical, optical, hydraulic, and/or pneumatic connections, conveying torque, load, data, signals, and/or power.
Typically, sections of a tool string are connected together with threaded connections. Such threaded connections are capable of transferring load. Right-hand (RH) threaded connections are also capable of transferring RH torque. However, application of left-hand (LH) torque to a tool string with RH threaded connections (and vice versa) risks breaking the string. Methods have been employed to obtain bi-directional torque holding capabilities for connections. Some examples of these bi-directional setting devices include thread locking mechanisms for saver subs, hydraulic locking rings, set screws, jam nuts, lock washers, keys, cross/thru-bolting, lock wires, clutches and thread locking compounds. However, these solutions have shortcomings. For example, many of the methods used to obtain bi-directional torque capabilities are limited by friction between component surfaces or compounds that typically result in a relative low torque resistant connection. Locking rings may provide only limited torque resistance, and it may be difficult to fully monitor any problem due to limited accessibility and location. For applications that require high bi-directional torque capabilities, only positive locking methods such as keys, clutches or cross/through-bolting are typically effective. Further, some high bi-directional torque connections require both turning and milling operations to manufacture, which increase the cost of the connection over just a turning operation required to manufacture a simple male-to-female threaded connection. Some high bi-directional torque connections also require significant additional components as compared to a simple male-to-female threaded connection, which adds to the cost.
Threaded connections also suffer from the risk of cross threading. When the threads are not correctly aligned before torque is applied, cross threading may damage the components. The result may be a weak or unsealed connection, risk of being unable to separate the components, and risk of being unable to re-connect the components once separated. Therefore, threading (length) compensation systems may be used to provide accurate alignment and/or positioning of components having threaded connections prior to application of make-up (or break-out) torque. Conventional threading compensation systems may require unacceptable increase in component length. For example, if a hydraulic cylinder positions a threaded component, providing threading compensation with the cylinder first requires an increase in the cylinder stroke length equal to the length compensation path. Next, the cylinder housing must also be increased by the same amount to accommodate the cylinder stroke in a retracted position. So adding conventional threading compensation to a hydraulic cylinder would require additional component space up to twice the length compensation path length. For existing rigs, where vertical clearance and component weight are important, this can cause problems.
Safer, faster, more reliable, and more efficient connections that are capable of conveying load, data, signals, power and/or bi-directional torque between the tool string and the top drive are needed.
The present disclosure generally relates to equipment and methods for coupling a top drive to one or more tools to facilitate data and/or signal transfer therebetween. The coupling may transfer both axial load and torque bi-directionally from the top drive to the one or more tools. The coupling may facilitate data and/or signal transfer, including tool string and/or downhole data feeds such as mud pulse telemetry, electromagnetic telemetry, wired drill pipe telemetry, and acoustic telemetry.
In an embodiment, a tool coupler includes a receiver assembly connectable to a top drive; a tool adapter connectable to a tool string, wherein a coupling between the receiver assembly and the tool adapter transfers at least one of torque and load therebetween; and a stationary data uplink comprising at least one of: a data swivel coupled to the receiver assembly; a wireless module coupled to the tool adapter; and a wireless transceiver coupled to the tool adapter.
In an embodiment, a method of operating a tool string includes coupling a receiver assembly to a tool adapter to transfer at least one of torque and load therebetween, the tool adapter being connected to the tool string; collecting data at one or more points proximal the tool string; and communicating the data to a stationary computer while rotating the tool adapter.
In an embodiment, a top drive system for handling a tubular includes a top drive; a receiver assembly connectable to the top drive; a casing running tool adapter, wherein a coupling between the receiver assembly and the casing running tool adapter transfers at least one of torque and load therebetween; and a stationary data uplink comprising at least one of: a data swivel coupled to the receiver assembly; a wireless module coupled to the casing running tool adapter; and a wireless transceiver coupled to the casing running tool adapter; wherein the casing running tool adapter comprises: a spear; a plurality of bails, and a casing feeder at a distal end of the plurality of bails, wherein, the casing feeder is pivotable at the distal end of the plurality of bails, the plurality of bails are pivotable relative to the spear, and the casing feeder is configured to grip casing.
In an embodiment, a method of handling a tubular includes coupling a receiver assembly to a tool adapter to transfer at least one of torque and load therebetween; gripping the tubular with a casing feeder of the tool adapter; orienting and positioning the tubular relative to the tool adapter; connecting the tubular to the tool adapter; collecting data including at least one of: tubular location, tubular orientation, tubular outer diameter, gripping diameter, clamping force applied, number of threading turns, and torque applied; and communicating the data to a stationary computer while rotating the tool adapter.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
The present disclosure provides equipment and methods for coupling a top drive to one or more tools to facilitate data and/or signal transfer therebetween. The top drive may include a control unit, a drive unit, and a tool coupler. The coupling may transfer torque bi-directionally from the top drive through the tool coupler to the one or more tools. The coupling may provide mechanical, electrical, optical, hydraulic, and/or pneumatic connections. The coupling may conveying torque, load, data, signals, and/or power. Data feeds may include, for example, mud pulse telemetry, electromagnetic telemetry, wired drill pipe telemetry, and/or acoustic telemetry. For example, axial loads of tool strings may be expected to be several hundred tons, up to, including, and sometimes surpassing 750 tons. Required torque transmission may be tens of thousands of foot-pounds, up to, including, and sometimes surpassing 100 thousand foot-pounds. Embodiments disclosed herein may provide axial connection integrity, capable to support high axial loads, good sealability, resistance to bending, high flow rates, and high flow pressures.
Some of the many benefits provided by embodiments of this disclosure include a tool coupler having a simple mechanism that is low maintenance. Benefits also include a reliable method to transfer full bi-directional torque, thereby reducing the risk of accidental breakout of threaded connections along the tool string. In some embodiments, the moving parts of the mechanism may be completely covered. During coupling or decoupling, no turning of exposed parts of the coupler or tool may be required. Coupling and decoupling is not complicated, and the connections may be release by hand as a redundant backup. Embodiments of this disclosure may also provide a fast, hands-free method to connect and transfer power from the top drive to the tools. Embodiments may also provide automatic connection for power, data, and/or signal communications. Embodiments may also provide threading (length) compensation to reduce impact, forces, and/or damage at the threads. Embodiments may provide confirmation of orientation and/or position of the components, for example a stab-in signal. During make-up or break-out, threading compensation may reduce the axial load at the thread and therefore the risk of damage of the thread.
At various times, top drive 4 may provide right hand (RH) torque or left hand (LH) torque to tool string 2, for example to make up or break out joints of drill pipe. Power, data, and/or signals may be communicated between top drive 4 and tool string 2. For example, pneumatic, hydraulic, electrical, optical, or other power, data, and/or signals may be communicated between top drive 4 and tool string 2. The top drive 4 may include a control unit, a drive unit, and a tool coupler. In some embodiments, the tool coupler may utilize threaded connections. In some embodiments, the tool coupler may be a combined multi-coupler (CMC) or quick connector to support load and transfer torque with couplings to transfer power, data, and/or signals (e.g., hydraulic, electric, optical, and/or pneumatic).
It should be understood that the components of tool couplers described herein could be usefully implemented in reverse configurations. For example,
As illustrated in
As illustrated in
Likewise, as illustrated in
As illustrated in
In some embodiments, one or more ring couplers 130 may move translationally 130-t relative to the housing 120. For example, as illustrated in
In some embodiments, the lower ring coupler 130-l may be a bushing. In some embodiments, the interior diameter of the lower ring coupler 130-l may be larger at the bottom than at the top. In some embodiments, the lower ring coupler may be a wedge bushing, having an interior diameter that linearly increases from top to bottom.
Receiver assembly 110 may be coupled to tool adapter 150 in order to transfer torque and/or load between the top drive and the tool. Coupling may proceed as a multi-step process. In one embodiment, as illustrated in
In some embodiments, pressure actuator 140-p may be actuated to drive upper ring coupler 130-u to rotate 130-r about central axis 285, and thereby to drive lower ring coupler 130-l to move translationally 130-t in order to preload the tool stem 160.
In some embodiments, receiver assembly 110 may include a clamp 135 and clamp actuator 145. For example, as illustrated in
In some embodiments, tool coupler 100 may provide length compensation for longitudinal positioning of tool stem 160. It may be beneficial to adjust the longitudinal position of tool stem 160, for example, to provide for threading of piping on tool string 2. Such length compensation may benefit from greater control of longitudinal positioning, motion, and/or torque than is typically available during drilling or completion operations. As illustrated in
Similar to support ring coupler 130-s, compensation ring coupler 130-c may rotate 130-r about central axis 285 to engage profile 170 of central shaft 180. For example, as illustrated in
Similar to clamp 135, compensation ring coupler 130-c may move translationally 135-t relative to the housing 120. For example, as illustrated in
One or more sensors may be used to monitor relative positions of the components of the tool coupler 100. For example, as illustrated in
As another example, sensors may monitor the position of the ring couplers 130 relative to other components of the tool coupler 100. For example, as illustrated in
The relative sizes of the various components of tool coupler 100 may be selected for coupling/decoupling efficiency, load transfer efficiency, and/or torque transfer efficiency. For example, as illustrated in
In some embodiments, guide elements may assist in aligning and/or orienting tool adapter 150 during coupling with receiver assembly 110. For example, one or more chamfer may be disposed at a lower-interior location on housing 120. One or more ridges and/or grooves may be disposed on central stem 190 to mesh with complementary grooves and/or ridges on central shaft 180. One or more pins may be disposed on tool adapter 150 to stab into holes on housing 120 to confirm and/or lock the orientation of the tool adapter 150 with the receiver assembly 110. In some embodiments, such pins/holes may provide stop surfaces to confirm complete insertion of tool adapter 150 into receiver assembly 110.
Optionally, seals, such as O-rings, may be disposed on central stem 190. The seals may be configured to be engaged only when the tool adapter 150 is fully aligned with the receiver assembly 110.
Optionally, a locking mechanism may be used that remains locked while the tool coupler 100 conveys axial load. Decoupling may only occur when tool coupler 100 is not carrying load. For example, actuators 140 may be self-locking (e.g., electronic interlock or hydraulic interlock). Alternatively, a locking pin may be used.
It should be appreciated that, for tool coupler 100, a variety of configurations, sensors, actuators, and/or adapters types and/or configurations may be considered to accommodate manufacturing and operational conditions. For example, although the illustrated embodiments show a configuration wherein the ring couplers are attached to the receiver assembly, reverse configurations are envisioned (e.g., wherein the ring couplers are attached to the tool adapter). Possible actuators include, for example, worm drives, hydraulic cylinders, compensation cylinders, etc. The actuators may be hydraulically, pneumatically, electrically, and/or manually controlled. In some embodiments, multiple control mechanism may be utilized to provide redundancy. One or more sensors may be used to monitor relative positions of the components of the top drive system. The sensors may be position sensors, rotation sensors, pressure sensors, optical sensors, magnetic sensors, etc. In some embodiments, stop surfaces may be used in conjunction with or in lieu of sensors to identify when components are appropriately positioned and/or oriented. Likewise, optical guides may be utilized to identify or confirm when components are appropriately positioned and/or oriented. In some embodiments, guide elements (e.g., pins and holes, chamfers, etc.) may assist in aligning and/or orienting the components of tool coupler 100. Bearings and seals may be disposed between components to provide support, cushioning, rotational freedom, and/or fluid management.
In addition to the equipment and methods for coupling a top drive to one or more tools specifically described above, a number of other coupling solutions exist that may be applicable for facilitating data and/or signal (e.g., modulated data) transfer. Several examples to note include U.S. Pat. Nos. 8,210,268, 8,727,021, 9,528,326, published US patent applications 2016-0145954, 2017-0074075, 2017-0067320, 2017-0037683, and co-pending U.S. patent applications having Ser. Nos. 15/444,016, 15/445,758, 15/447,881, 15/447,926, 15/457,572, 15/607,159, 15/627,428. For ease of discussion, the following disclosure will address the tool coupler embodiment of
A variety of data may be collected along a tool string and/or downhole, including pressure, temperature, stress, strain, fluid flow, vibration, rotation, salinity, relative positions of equipment, relative motions of equipment, etc. Some data may be collected by making measurements at various points proximal the tool string (sometimes referred to as “along string measurements” or ASM). Downhole data may be collected and transmitted to the surface for storage, analysis, and/or processing. Downhole data may be collected and transmitted through a downhole data network. The downhole data may then be transmitted to one or more stationary components, such as a computer on the oil rig, via a stationary data uplink. Control signals may be generated at the surface, sometimes in response to downhole data. Control signals may be transmitted along the tool string and/or downhole (e.g., in the form of modulated data) to actuate equipment and/or otherwise affect tool string and/or downhole operations. Downhole data and/or surface data may be transmitted between the generally rotating tool string and the generally stationary drilling rig bi-directionally. As previously discussed, embodiments may provide automatic connection for power, data, and/or signal communications between top drive 4 and tool string 2. The housing 120 of the receiver assembly 110 may be connected to top drive 4. The tool stem 160 of the tool adapter 150 may connect the tool coupler 100 to the tool string 2. Tool coupler 100 may thereby facilitate transmission of data between the tool string 2 and the top drive 4.
Data may be transmitted along the tool string through a variety of mechanisms (e.g., downhole data networks), for example mud pulse telemetry, electromagnetic telemetry, fiber optic telemetry, wired drill pipe (WDP) telemetry, acoustic telemetry, etc. For example, WDP networks may include conventional drill pipe that has been modified to accommodate an inductive coil embedded in a secondary shoulder of both the pin and box. Data links may be used at various points along the tool string to clean and/or boost the data signal for improved signal-to-noise ratio. ASM sensors may be used in WDP networks, for example to measure physical parameters such as pressure, stress, strain, vibration, rotation, etc.
In
Similar to the tool coupler 100 of
During some operations, tool adapter 150 may be a casing running tool adapter. For example,
As illustrated in
As illustrated in
As illustrated in
In an embodiment, a tool coupler includes a first component comprising: a ring coupler having mating features and rotatable between a first position and a second position; an actuator functionally connected to the ring coupler to rotate the ring coupler between the first position and the second position; and a second component comprising a profile complementary to the ring coupler.
In one or more embodiments disclosed herein, with the ring coupler in the first position, the mating features do not engage the profile; and with the ring coupler in the second position, the mating features engage the profile to couple the first component to the second component.
In one or more embodiments disclosed herein, the first component comprises a housing, the second component comprises a central shaft, and the profile is disposed on an outside of the central shaft.
In one or more embodiments disclosed herein, the first component comprises a central shaft, the second component comprises a housing, and the profile is disposed on an inside of the housing.
In one or more embodiments disclosed herein, the first component is a receiver assembly and the second component is a tool adapter.
In one or more embodiments disclosed herein, a rotation of the ring coupler is around a central axis of the tool coupler.
In one or more embodiments disclosed herein, the ring coupler is a single component forming a complete ring.
In one or more embodiments disclosed herein, the actuator is fixedly connected to the housing.
In one or more embodiments disclosed herein, the ring coupler is configured to rotate relative to the housing, to move translationally relative to the housing, or to both rotate and move translationally relative to the housing.
In one or more embodiments disclosed herein, the actuator is functionally connected to the ring coupler to cause the ring coupler to rotate relative to the housing, to move translationally relative to the housing, or to both rotate and move translationally relative to the housing.
In one or more embodiments disclosed herein, the first component further comprises a central stem having an outer diameter less than an inner diameter of the central shaft.
In one or more embodiments disclosed herein, when the first component is coupled to the second component, the central stem and the central shaft share a central bore.
In one or more embodiments disclosed herein, the housing includes mating features disposed on an interior of the housing and complementary to the profile.
In one or more embodiments disclosed herein, the profile and the housing mating features are configured to transfer torque between the first component and the second component.
In one or more embodiments disclosed herein, when the first component is coupled to the second component, the housing mating features are interleaved with features of the profile.
In one or more embodiments disclosed herein, the profile includes convex features on an outside of the central shaft.
In one or more embodiments disclosed herein, the profile comprises a plurality of splines that run vertically along an outside of the central shaft.
In one or more embodiments disclosed herein, the splines are distributed symmetrically about a central axis of the central shaft.
In one or more embodiments disclosed herein, each of the splines have a same width.
In one or more embodiments disclosed herein, the profile comprises at least two discontiguous sets of splines distributed vertically along the outside of the central shaft.
In one or more embodiments disclosed herein, the mating features comprise a plurality of mating features that run vertically along an interior thereof.
In one or more embodiments disclosed herein, the mating features include convex features on an inner surface of the ring coupler.
In one or more embodiments disclosed herein, the mating features are distributed symmetrically about a central axis of the ring coupler.
In one or more embodiments disclosed herein, each of the mating features are the same width.
In one or more embodiments disclosed herein, the ring coupler comprises cogs distributed on an outside thereof.
In one or more embodiments disclosed herein, the actuator has gearing that meshes with the cogs.
In one or more embodiments disclosed herein, the actuator comprises at least one of a worm drive and a hydraulic cylinder.
In one or more embodiments disclosed herein, the housing has a linear rack on an interior thereof; the ring coupler has threading on an outside thereof; and the ring coupler and the linear rack are configured such that rotation of the ring coupler causes the ring coupler to move translationally relative to the housing.
In one or more embodiments disclosed herein, the first component further comprises a second ring coupler; the actuator is configured to drive the ring coupler to rotate about a central axis; and the ring coupler is configured to drive the second ring coupler to move translationally relative to the housing.
In one or more embodiments disclosed herein, the first component further comprises a second actuator and a second ring coupler.
In one or more embodiments disclosed herein, the second actuator is functionally connected to the second ring coupler.
In one or more embodiments disclosed herein, the second actuator is functionally connected to the ring coupler.
In one or more embodiments disclosed herein, the first component further comprises a wedge bushing below the ring coupler.
In one or more embodiments disclosed herein, the first component further comprises an external indicator indicative of an orientation of the ring coupler.
In one or more embodiments disclosed herein, the first component further comprises a second ring coupler and a second actuator; and the second actuator is functionally connected to the second ring coupler to cause the second ring coupler to move translationally relative to the ring coupler.
In one or more embodiments disclosed herein, the second ring coupler is rotationally fixed to the ring coupler.
In one or more embodiments disclosed herein, the profile comprises a first set of splines and a second set of splines, each distributed vertically along the outside of the central shaft; and the first set of splines is discontiguous with the second set of splines.
In one or more embodiments disclosed herein, the ring coupler includes mating features on an interior thereof that are complementary with the first set of splines; and the second ring coupler includes mating features on an interior thereof that are complementary with the second set of splines.
In one or more embodiments disclosed herein, when the central shaft is inserted into the housing, the first set of splines is between the ring coupler and the second ring coupler.
In one or more embodiments disclosed herein, the second ring coupler is capable of pushing downwards on the first set of splines; and the second ring coupler is capable of pushing upwards on the second set of splines.
In one or more embodiments disclosed herein, the second actuator comprises an upwards actuator that is capable of applying an upwards force on the second ring coupler, and a downwards actuator that is capable of applying a downwards force on the second ring coupler.
In one or more embodiments disclosed herein, the actuator comprises an upwards actuator that is capable of applying an upwards force on the ring coupler, and the second actuator comprises a downwards actuator that is capable of applying a downwards force on the second ring coupler.
In an embodiment, a method of coupling a first component to a second component includes inserting a central shaft of the first component into a housing of the second component; rotating a ring coupler around the central shaft; and engaging mating features of the ring coupler with a profile, wherein the profile is on an outside of the central shaft or an inside of the housing.
In one or more embodiments disclosed herein, the first component is a tool adapter and the second component is a receiver assembly.
In one or more embodiments disclosed herein, the method also includes, after engaging the mating features, longitudinally positioning a tool stem connected to the central shaft.
In one or more embodiments disclosed herein, the method also includes detecting when inserting the central shaft into the housing has completed.
In one or more embodiments disclosed herein, the profile comprises a plurality of splines distributed on an outside of the central shaft.
In one or more embodiments disclosed herein, the method also includes sliding the ring coupler mating features between the splines.
In one or more embodiments disclosed herein, the method also includes sliding a plurality of housing mating features between the splines.
In one or more embodiments disclosed herein, the method also includes, prior to inserting the central shaft, detecting an orientation of the splines relative to mating features of the housing.
In one or more embodiments disclosed herein, an actuator drives the ring coupler to rotate about a central axis of the ring coupler.
In one or more embodiments disclosed herein, rotating the ring coupler comprises rotation of less than a full turn.
In one or more embodiments disclosed herein, the method also includes, after engaging the mating features with the profile, transferring at least one of torque and load between the first component and the second component.
In one or more embodiments disclosed herein, the profile comprises an upper set and a lower set of splines distributed vertically along the outside of the central shaft; and the ring coupler rotates between the two sets of splines.
In one or more embodiments disclosed herein, the method also includes interleaving the lower set of splines with a plurality of housing mating features.
In one or more embodiments disclosed herein, the method also includes, after engaging the ring coupler mating features with the profile: transferring torque between the lower set of splines and the housing mating features, and transferring load between the upper set of splines and the ring coupler mating features.
In an embodiment, a method of coupling a first component to a second component includes inserting a central shaft of the first component into a housing of the second component; rotating a first ring coupler around the central shaft; and clamping a profile using the first ring coupler and a second ring coupler, wherein the profile is on an outside of the central shaft or an inside of the housing.
In one or more embodiments disclosed herein, the first component is a tool adapter and the second component is a receiver assembly.
In one or more embodiments disclosed herein, the method also includes, after rotating the first ring coupler, rotating a third ring coupler around the central shaft, wherein: rotating the first ring coupler comprises rotation of less than a full turn, and rotating the third ring coupler comprise rotation of more than a full turn.
In one or more embodiments disclosed herein, rotating the first ring coupler causes rotation of the second ring coupler.
In one or more embodiments disclosed herein, the method also includes, after rotating the first ring coupler, moving the second ring coupler translationally relative to the housing.
In one or more embodiments disclosed herein, the method also includes, after rotating the first ring coupler: rotating a third ring coupler around the central shaft; and moving the second ring coupler and the third ring coupler translationally relative to the housing.
In one or more embodiments disclosed herein, the method also includes, after clamping the profile, transferring at least one of torque and load between the first component and the second component.
In an embodiment, a method of coupling a first component to a second component includes inserting a central shaft of the first component into a housing of the second component; rotating a first ring coupler around the central shaft; and moving a second ring coupler vertically relative to the housing to engage a profile, wherein the profile is on an outside of the central shaft or an inside of the housing.
In one or more embodiments disclosed herein, the first component is a tool adapter and the second component is a receiver assembly.
In one or more embodiments disclosed herein, engaging the profile comprises at least one of: clamping first splines of the profile between the first ring coupler and the second ring coupler; and pushing upwards on second splines of the profile.
In one or more embodiments disclosed herein, engaging the profile comprises both, at different times: pushing downward on first splines of the profile; and pushing upwards on second splines of the profile.
In one or more embodiments disclosed herein, the method also includes supporting a load from the first splines of the profile with the first ring coupler.
In an embodiment, a tool coupler includes a receiver assembly connectable to a top drive; a tool adapter connectable to a tool string, wherein a coupling between the receiver assembly and the tool adapter transfers at least one of torque and load therebetween; and a stationary data uplink comprising at least one of: a data swivel coupled to the receiver assembly; a wireless module coupled to the tool adapter; and a wireless transceiver coupled to the tool adapter.
In one or more embodiments disclosed herein, the stationary data uplink comprises the data swivel coupled to the receiver assembly, and the data swivel is communicatively coupled with a stationary computer by data stator lines.
In one or more embodiments disclosed herein, the stationary data uplink comprises the data swivel coupled to the receiver assembly, the tool coupler further comprising a data coupling between the receiver assembly and the tool adapter.
In one or more embodiments disclosed herein, the data swivel is communicatively coupled with the data coupling by data rotator lines.
In one or more embodiments disclosed herein, the data coupling is communicatively coupled with a downhole data feed comprising at least one of: a mud pulse telemetry network, an electromagnetic telemetry network, a wired drill pipe telemetry network, and an acoustic telemetry network.
In one or more embodiments disclosed herein, the stationary data uplink comprises the wireless module coupled to the tool adapter, and the wireless module is communicatively coupled with a stationary computer by at least one of: Wi-Fi signals, Bluetooth signals, and radio signals.
In one or more embodiments disclosed herein, the stationary data uplink comprises the wireless module coupled to the tool adapter, and the wireless module is communicatively coupled with a downhole data feed comprising at least one of: a mud pulse telemetry network, an electromagnetic telemetry network, a wired drill pipe telemetry network, and an acoustic telemetry network.
In one or more embodiments disclosed herein, the stationary data uplink comprises the wireless transceiver coupled to the tool adapter, and the wireless transceiver comprises an electronic acoustic receiver.
In one or more embodiments disclosed herein, the wireless transceiver is communicatively coupled with a stationary computer by at least one of: Wi-Fi signals, Bluetooth signals, radio signals, and acoustic signals.
In one or more embodiments disclosed herein, the wireless transceiver is wirelessly communicatively coupled with a downhole data feed comprising at least one of: a mud pulse telemetry network, an electromagnetic telemetry network, a wired drill pipe telemetry network, and an acoustic telemetry network.
In one or more embodiments disclosed herein, the tool coupler also includes an electric power supply for the stationary data uplink.
In one or more embodiments disclosed herein, the electric power supply comprises at least one of: an inductor coupled to the receiver assembly, and a battery coupled to the tool adapter.
In an embodiment, a method of operating a tool string includes coupling a receiver assembly to a tool adapter to transfer at least one of torque and load therebetween, the tool adapter being connected to the tool string; collecting data at one or more points proximal the tool string; and communicating the data to a stationary computer while rotating the tool adapter.
In one or more embodiments disclosed herein, communicating the data to the stationary computer comprises transmitting the data through a downhole data network comprising at least one of: a mud pulse telemetry network, an electromagnetic telemetry network, a wired drill pipe telemetry network, and an acoustic telemetry network.
In one or more embodiments disclosed herein, communicating the data to the stationary computer comprises transmitting the data through a stationary data uplink comprising at least one of: a data swivel coupled to the receiver assembly; a wireless module coupled to the tool adapter; and a wireless transceiver coupled to the tool adapter.
In one or more embodiments disclosed herein, the method also includes supplying power to the stationary data uplink with an electric power supply that comprises at least one of: an inductor coupled to the receiver assembly, and a battery coupled to the tool adapter.
In one or more embodiments disclosed herein, the method also includes communicating a control signal to the tool string.
In an embodiment, a top drive system for handling a tubular includes a top drive; a receiver assembly connectable to the top drive; a casing running tool adapter, wherein a coupling between the receiver assembly and the casing running tool adapter transfers at least one of torque and load therebetween; and a stationary data uplink comprising at least one of: a data swivel coupled to the receiver assembly; a wireless module coupled to the casing running tool adapter; and a wireless transceiver coupled to the casing running tool adapter; wherein the casing running tool adapter comprises: a spear; a plurality of bails, and a casing feeder at a distal end of the plurality of bails, wherein, the casing feeder is pivotable at the distal end of the plurality of bails, the plurality of bails are pivotable relative to the spear, and the casing feeder is configured to grip casing.
In one or more embodiments disclosed herein, at least one of: a length of at least one of the plurality of bails is adjustable to move the casing relative to the spear; and feeders of the casing feeder are actuatable to move the casing relative to the spear.
In an embodiment, a method of handling a tubular includes coupling a receiver assembly to a tool adapter to transfer at least one of torque and load therebetween; gripping the tubular with a casing feeder of the tool adapter; orienting and positioning the tubular relative to the tool adapter; connecting the tubular to the tool adapter; collecting data including at least one of: tubular location, tubular orientation, tubular outer diameter, gripping diameter, clamping force applied, number of threading turns, and torque applied; and communicating the data to a stationary computer while rotating the tool adapter.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
1367156 | McAlvay et al. | Feb 1921 | A |
1610977 | Scott | Dec 1926 | A |
1822444 | MacClatchie | Sep 1931 | A |
1853299 | Carroll | Apr 1932 | A |
2370354 | Hurst | Feb 1945 | A |
3147992 | Haeber et al. | Sep 1964 | A |
3354951 | Savage et al. | Nov 1967 | A |
3385370 | Knox et al. | May 1968 | A |
3662842 | Bromell | May 1972 | A |
3698426 | Litchfield et al. | Oct 1972 | A |
3747675 | Brown | Jul 1973 | A |
3766991 | Brown | Oct 1973 | A |
3774697 | Brown | Nov 1973 | A |
3776320 | Brown | Dec 1973 | A |
3842619 | Bychurch, Sr. | Oct 1974 | A |
3888318 | Brown | Jun 1975 | A |
3899024 | Tonnelli et al. | Aug 1975 | A |
3913687 | Gyongyosi et al. | Oct 1975 | A |
3915244 | Brown | Oct 1975 | A |
3964552 | Slater | Jun 1976 | A |
4022284 | Crow | May 1977 | A |
4051587 | Boyadjieff | Oct 1977 | A |
4100968 | Delano | Jul 1978 | A |
4192155 | Gray | Mar 1980 | A |
4199847 | Owens | Apr 1980 | A |
4235469 | Denny et al. | Nov 1980 | A |
4364407 | Hilliard | Dec 1982 | A |
4377179 | Giebeler | Mar 1983 | A |
4402239 | Mooney | Sep 1983 | A |
4406324 | Baugh et al. | Sep 1983 | A |
4449596 | Boyadjieff | May 1984 | A |
4478244 | Garrett | Oct 1984 | A |
4497224 | Jurgens | Feb 1985 | A |
4593773 | Skeie | Jun 1986 | A |
4599046 | James | Jul 1986 | A |
4762187 | Haney | Aug 1988 | A |
4776617 | Sato | Oct 1988 | A |
4779688 | Baugh | Oct 1988 | A |
4791997 | Krasnov | Dec 1988 | A |
4813493 | Shaw et al. | Mar 1989 | A |
4815546 | Haney et al. | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4844181 | Bassinger | Jul 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4955949 | Bailey et al. | Sep 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4972741 | Sibille | Nov 1990 | A |
4981180 | Price | Jan 1991 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5036927 | Willis | Aug 1991 | A |
5099725 | Bouligny, Jr. et al. | Mar 1992 | A |
5152554 | LaFleur et al. | Oct 1992 | A |
5172940 | Usui et al. | Dec 1992 | A |
5191939 | Stokley | Mar 1993 | A |
5215153 | Younes | Jun 1993 | A |
5245877 | Ruark | Sep 1993 | A |
5282653 | LaFleur et al. | Feb 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5348351 | LaFleur et al. | Sep 1994 | A |
5385514 | Dawe | Jan 1995 | A |
5433279 | Tessari et al. | Jul 1995 | A |
5441310 | Barrett et al. | Aug 1995 | A |
5456320 | Baker | Oct 1995 | A |
5479988 | Appleton | Jan 1996 | A |
5486223 | Carden | Jan 1996 | A |
5501280 | Brisco | Mar 1996 | A |
5509442 | Claycomb | Apr 1996 | A |
5577566 | Albright et al. | Nov 1996 | A |
5584343 | Coone | Dec 1996 | A |
5645131 | Trevisani | Jul 1997 | A |
5664310 | Penisson | Sep 1997 | A |
5682952 | Stokley | Nov 1997 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5778742 | Stuart | Jul 1998 | A |
5839330 | Stokka | Nov 1998 | A |
5909768 | Castille et al. | Jun 1999 | A |
5918673 | Hawkins et al. | Jul 1999 | A |
5950724 | Giebeler | Sep 1999 | A |
5971079 | Mullins | Oct 1999 | A |
5992520 | Schultz et al. | Nov 1999 | A |
6003412 | Dlask et al. | Dec 1999 | A |
6053191 | Hussey | Apr 2000 | A |
6102116 | Giovanni | Aug 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6173777 | Mullins | Jan 2001 | B1 |
6276450 | Seneviratne | Aug 2001 | B1 |
6279654 | Mosing et al. | Aug 2001 | B1 |
6289911 | Majkovic | Sep 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6328343 | Hosie et al. | Dec 2001 | B1 |
6378630 | Ritorto et al. | Apr 2002 | B1 |
6390190 | Mullins | May 2002 | B2 |
6401811 | Coone | Jun 2002 | B1 |
6415862 | Mullins | Jul 2002 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6460620 | LaFleur | Oct 2002 | B1 |
6527047 | Pietras | Mar 2003 | B1 |
6536520 | Snider et al. | Mar 2003 | B1 |
6571876 | Szarka | Jun 2003 | B2 |
6578632 | Mullins | Jun 2003 | B2 |
6591471 | Hollingsworth et al. | Jul 2003 | B1 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6604578 | Mullins | Aug 2003 | B2 |
6622796 | Pietras | Sep 2003 | B1 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6640824 | Majkovic | Nov 2003 | B2 |
6666273 | Laurel | Dec 2003 | B2 |
6675889 | Mullins et al. | Jan 2004 | B1 |
6679333 | York et al. | Jan 2004 | B2 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6705405 | Pietras | Mar 2004 | B1 |
6715542 | Mullins | Apr 2004 | B2 |
6719046 | Mullins | Apr 2004 | B2 |
6722425 | Mullins | Apr 2004 | B2 |
6725938 | Pietras | Apr 2004 | B1 |
6732819 | Wenzel | May 2004 | B2 |
6732822 | Slack et al. | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6742596 | Haugen | Jun 2004 | B2 |
6779599 | Mullins et al. | Aug 2004 | B2 |
6832656 | Fournier, Jr. et al. | Dec 2004 | B2 |
6883605 | Arceneaux et al. | Apr 2005 | B2 |
6892835 | Shahin et al. | May 2005 | B2 |
6908121 | Hirth et al. | Jun 2005 | B2 |
6925807 | Jones et al. | Aug 2005 | B2 |
6938697 | Haugen | Sep 2005 | B2 |
6976298 | Pietras | Dec 2005 | B1 |
6994176 | Shahin et al. | Feb 2006 | B2 |
7000503 | Dagenais et al. | Feb 2006 | B2 |
7001065 | Dishaw et al. | Feb 2006 | B2 |
7004259 | Pietras | Feb 2006 | B2 |
7007753 | Robichaux et al. | Mar 2006 | B2 |
7017671 | Williford | Mar 2006 | B2 |
7021374 | Pietras | Apr 2006 | B2 |
7025130 | Bailey et al. | Apr 2006 | B2 |
7073598 | Haugen | Jul 2006 | B2 |
7090021 | Pietras | Aug 2006 | B2 |
7096948 | Mosing et al. | Aug 2006 | B2 |
7114235 | Jansch et al. | Oct 2006 | B2 |
7128161 | Pietras | Oct 2006 | B2 |
7137454 | Pietras | Nov 2006 | B2 |
7140443 | Beierbach et al. | Nov 2006 | B2 |
7143849 | Shahin et al. | Dec 2006 | B2 |
7147254 | Niven et al. | Dec 2006 | B2 |
7159654 | Ellison et al. | Jan 2007 | B2 |
7178612 | Belik | Feb 2007 | B2 |
7213656 | Pietras | May 2007 | B2 |
7219744 | Pietras | May 2007 | B2 |
7231969 | Folk et al. | Jun 2007 | B2 |
7270189 | Brown et al. | Sep 2007 | B2 |
7281451 | Schulze Beckinghausen | Oct 2007 | B2 |
7281587 | Haugen | Oct 2007 | B2 |
7303022 | Tilton et al. | Dec 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7353880 | Pietras | Apr 2008 | B2 |
7448456 | Shahin et al. | Nov 2008 | B2 |
7451826 | Pietras | Nov 2008 | B2 |
7490677 | Buytaert et al. | Feb 2009 | B2 |
7503397 | Giroux et al. | Mar 2009 | B2 |
7509722 | Shahin et al. | Mar 2009 | B2 |
7513300 | Pietras et al. | Apr 2009 | B2 |
7591304 | Juhasz et al. | Sep 2009 | B2 |
7617866 | Pietras | Nov 2009 | B2 |
7635026 | Mosing et al. | Dec 2009 | B2 |
7665515 | Mullins | Feb 2010 | B2 |
7665530 | Wells et al. | Feb 2010 | B2 |
7665531 | Pietras | Feb 2010 | B2 |
7669662 | Pietras | Mar 2010 | B2 |
7690422 | Swietlik et al. | Apr 2010 | B2 |
7694730 | Angman | Apr 2010 | B2 |
7694744 | Shahin | Apr 2010 | B2 |
7699121 | Juhasz et al. | Apr 2010 | B2 |
7712523 | Snider et al. | May 2010 | B2 |
7730698 | Montano et al. | Jun 2010 | B1 |
7757759 | Jahn et al. | Jul 2010 | B2 |
7779922 | Harris et al. | Aug 2010 | B1 |
7793719 | Snider et al. | Sep 2010 | B2 |
7817062 | Li et al. | Oct 2010 | B1 |
7828085 | Kuttel et al. | Nov 2010 | B2 |
7841415 | Winter | Nov 2010 | B2 |
7854265 | Zimmermann | Dec 2010 | B2 |
7866390 | Latiolais, Jr. et al. | Jan 2011 | B2 |
7874352 | Odell, II et al. | Jan 2011 | B2 |
7874361 | Mosing et al. | Jan 2011 | B2 |
7878237 | Angman | Feb 2011 | B2 |
7878254 | Abdollahi et al. | Feb 2011 | B2 |
7882902 | Boutwell, Jr. | Feb 2011 | B2 |
7896084 | Haugen | Mar 2011 | B2 |
7918273 | Snider et al. | Apr 2011 | B2 |
7958787 | Hunter | Jun 2011 | B2 |
7971637 | Duhon et al. | Jul 2011 | B2 |
7975768 | Fraser et al. | Jul 2011 | B2 |
8118106 | Wiens et al. | Feb 2012 | B2 |
8141642 | Olstad et al. | Mar 2012 | B2 |
8210268 | Heidecke et al. | Jul 2012 | B2 |
8281856 | Jahn et al. | Oct 2012 | B2 |
8307903 | Redlinger et al. | Nov 2012 | B2 |
8365834 | Liess et al. | Feb 2013 | B2 |
8459361 | Leuchtenberg | Jun 2013 | B2 |
8505984 | Henderson et al. | Aug 2013 | B2 |
8567512 | Odell, II et al. | Oct 2013 | B2 |
8601910 | Begnaud | Dec 2013 | B2 |
8636067 | Robichaux et al. | Jan 2014 | B2 |
8651175 | Fallen | Feb 2014 | B2 |
8668003 | Osmundsen et al. | Mar 2014 | B2 |
8708055 | Liess et al. | Apr 2014 | B2 |
8727021 | Heidecke et al. | May 2014 | B2 |
8776898 | Liess et al. | Jul 2014 | B2 |
8783339 | Sinclair et al. | Jul 2014 | B2 |
8839884 | Kuttel et al. | Sep 2014 | B2 |
8893772 | Henderson et al. | Nov 2014 | B2 |
9068406 | Clasen et al. | Jun 2015 | B2 |
9206851 | Slaughter, Jr. et al. | Dec 2015 | B2 |
9528326 | Heidecke et al. | Dec 2016 | B2 |
9631438 | McKay | Apr 2017 | B2 |
10197050 | Robison et al. | Feb 2019 | B2 |
20010021347 | Mills | Sep 2001 | A1 |
20020043403 | Juhasz et al. | Apr 2002 | A1 |
20020074132 | Juhasz et al. | Jun 2002 | A1 |
20020084069 | Mosing et al. | Jul 2002 | A1 |
20020129934 | Mullins et al. | Sep 2002 | A1 |
20020170720 | Haugen | Nov 2002 | A1 |
20030098150 | Andreychuk | May 2003 | A1 |
20030107260 | Ording et al. | Jun 2003 | A1 |
20030221519 | Haugen | Dec 2003 | A1 |
20040003490 | Shahin et al. | Jan 2004 | A1 |
20040069497 | Jones et al. | Apr 2004 | A1 |
20040163822 | Zhang | Aug 2004 | A1 |
20040216924 | Pietras et al. | Nov 2004 | A1 |
20040222901 | Dodge | Nov 2004 | A1 |
20050000691 | Giroux et al. | Jan 2005 | A1 |
20050087368 | Boyle | Apr 2005 | A1 |
20050173154 | Lesko | Aug 2005 | A1 |
20050206163 | Guesnon et al. | Sep 2005 | A1 |
20050238496 | Mills | Oct 2005 | A1 |
20050257933 | Pietras | Nov 2005 | A1 |
20050269072 | Folk et al. | Dec 2005 | A1 |
20050269104 | Folk et al. | Dec 2005 | A1 |
20050269105 | Pietras | Dec 2005 | A1 |
20050274508 | Folk et al. | Dec 2005 | A1 |
20060001549 | Shah | Jan 2006 | A1 |
20060024177 | Robison et al. | Feb 2006 | A1 |
20060037784 | Walter et al. | Feb 2006 | A1 |
20060113083 | Connell | Jun 2006 | A1 |
20060124353 | Juhasz et al. | Jun 2006 | A1 |
20060151181 | Shahin | Jul 2006 | A1 |
20060180315 | Shahin et al. | Aug 2006 | A1 |
20060233650 | Zhou | Oct 2006 | A1 |
20060290528 | MacPherson | Dec 2006 | A1 |
20070017671 | Clark | Jan 2007 | A1 |
20070029112 | Li | Feb 2007 | A1 |
20070030167 | Li et al. | Feb 2007 | A1 |
20070044973 | Fraser et al. | Mar 2007 | A1 |
20070074588 | Harata et al. | Apr 2007 | A1 |
20070074874 | Richardson | Apr 2007 | A1 |
20070102992 | Jager | May 2007 | A1 |
20070131416 | Odell, II et al. | Jun 2007 | A1 |
20070137853 | Zhang | Jun 2007 | A1 |
20070140801 | Kuttel et al. | Jun 2007 | A1 |
20070144730 | Shahin et al. | Jun 2007 | A1 |
20070158076 | Hollingsworth, Jr. et al. | Jul 2007 | A1 |
20070188344 | Hache | Aug 2007 | A1 |
20070251699 | Wells et al. | Nov 2007 | A1 |
20070251701 | Jahn et al. | Nov 2007 | A1 |
20070257811 | Hall | Nov 2007 | A1 |
20070263488 | Clark | Nov 2007 | A1 |
20080006401 | Buytaert et al. | Jan 2008 | A1 |
20080007421 | Liu | Jan 2008 | A1 |
20080059073 | Giroux et al. | Mar 2008 | A1 |
20080093127 | Angman | Apr 2008 | A1 |
20080099196 | Latiolais et al. | May 2008 | A1 |
20080125876 | Boutwell | May 2008 | A1 |
20080202812 | Childers et al. | Aug 2008 | A1 |
20080308281 | Boutwell, Jr. et al. | Dec 2008 | A1 |
20090115623 | Macpherson | May 2009 | A1 |
20090146836 | Santoso | Jun 2009 | A1 |
20090151934 | Heidecke et al. | Jun 2009 | A1 |
20090159294 | Abdollahi et al. | Jun 2009 | A1 |
20090173493 | Hutin | Jul 2009 | A1 |
20090200038 | Swietlik et al. | Aug 2009 | A1 |
20090205820 | Koederitz et al. | Aug 2009 | A1 |
20090205827 | Swietlik et al. | Aug 2009 | A1 |
20090205836 | Swietlik et al. | Aug 2009 | A1 |
20090205837 | Swietlik et al. | Aug 2009 | A1 |
20090229837 | Wiens et al. | Sep 2009 | A1 |
20090266532 | Revheim et al. | Oct 2009 | A1 |
20090272537 | Alikin et al. | Nov 2009 | A1 |
20090274544 | Liess | Nov 2009 | A1 |
20090274545 | Liess et al. | Nov 2009 | A1 |
20090289808 | Prammer | Nov 2009 | A1 |
20090316528 | Ramshaw | Dec 2009 | A1 |
20090321086 | Zimmermann | Dec 2009 | A1 |
20100032162 | Olstad et al. | Feb 2010 | A1 |
20100065336 | Wells et al. | Mar 2010 | A1 |
20100097890 | Sullivan | Apr 2010 | A1 |
20100101805 | Angelle et al. | Apr 2010 | A1 |
20100116550 | Hutin | May 2010 | A1 |
20100171638 | Clark | Jul 2010 | A1 |
20100171639 | Clark | Jul 2010 | A1 |
20100172210 | Clark | Jul 2010 | A1 |
20100182161 | Robbins | Jul 2010 | A1 |
20100200222 | Robichaux et al. | Aug 2010 | A1 |
20100206552 | Wollum | Aug 2010 | A1 |
20100206583 | Swietlik et al. | Aug 2010 | A1 |
20100206584 | Clubb et al. | Aug 2010 | A1 |
20100213942 | Lazarev | Aug 2010 | A1 |
20100236777 | Partouche | Sep 2010 | A1 |
20100271233 | Li | Oct 2010 | A1 |
20100328096 | Hache | Dec 2010 | A1 |
20110017512 | Codazzi | Jan 2011 | A1 |
20110018734 | Varveropoulos | Jan 2011 | A1 |
20110036586 | Hart et al. | Feb 2011 | A1 |
20110039086 | Graham et al. | Feb 2011 | A1 |
20110088495 | Buck et al. | Apr 2011 | A1 |
20110198076 | Villreal | Aug 2011 | A1 |
20110214919 | McClung, III | Sep 2011 | A1 |
20110280104 | McClung, III | Nov 2011 | A1 |
20120013481 | Clark | Jan 2012 | A1 |
20120014219 | Clark | Jan 2012 | A1 |
20120048574 | Wiens et al. | Mar 2012 | A1 |
20120126992 | Rodney | May 2012 | A1 |
20120152530 | Wiedecke et al. | Jun 2012 | A1 |
20120160517 | Bouligny et al. | Jun 2012 | A1 |
20120166089 | Ramshaw | Jun 2012 | A1 |
20120212326 | Christiansen et al. | Aug 2012 | A1 |
20120230841 | Gregory et al. | Sep 2012 | A1 |
20120234107 | Pindiprolu et al. | Sep 2012 | A1 |
20120273192 | Schmidt et al. | Nov 2012 | A1 |
20120274477 | Prammer | Nov 2012 | A1 |
20120298376 | Twardowski | Nov 2012 | A1 |
20130038144 | McAleese et al. | Feb 2013 | A1 |
20130055858 | Richardson | Mar 2013 | A1 |
20130056977 | Henderson et al. | Mar 2013 | A1 |
20130062074 | Angelle et al. | Mar 2013 | A1 |
20130075077 | Henderson et al. | Mar 2013 | A1 |
20130075106 | Tran et al. | Mar 2013 | A1 |
20130105178 | Pietras | May 2013 | A1 |
20130192357 | Ramshaw | Aug 2013 | A1 |
20130207382 | Robichaux | Aug 2013 | A1 |
20130207388 | Jansson et al. | Aug 2013 | A1 |
20130213669 | Kriesels et al. | Aug 2013 | A1 |
20130233624 | In | Sep 2013 | A1 |
20130269926 | Liess et al. | Oct 2013 | A1 |
20130271576 | Elllis | Oct 2013 | A1 |
20130275100 | Ellis et al. | Oct 2013 | A1 |
20130278432 | Shashoua | Oct 2013 | A1 |
20130299247 | Kuttel et al. | Nov 2013 | A1 |
20140050522 | Slaughter, Jr. et al. | Feb 2014 | A1 |
20140083768 | Moriarty | Mar 2014 | A1 |
20140083769 | Moriarty | Mar 2014 | A1 |
20140090856 | Pratt et al. | Apr 2014 | A1 |
20140116686 | Odell, II et al. | May 2014 | A1 |
20140131052 | Richardson | May 2014 | A1 |
20140202767 | Feasey | Jul 2014 | A1 |
20140233804 | Gustavsson et al. | Aug 2014 | A1 |
20140246237 | Prammer | Sep 2014 | A1 |
20140262521 | Bradley et al. | Sep 2014 | A1 |
20140305662 | Giroux et al. | Oct 2014 | A1 |
20140326468 | Heidecke et al. | Nov 2014 | A1 |
20140345426 | Rosano et al. | Nov 2014 | A1 |
20140352944 | Devarajan et al. | Dec 2014 | A1 |
20140360780 | Moss et al. | Dec 2014 | A1 |
20140374122 | Fanguy | Dec 2014 | A1 |
20150014063 | Simanjuntak et al. | Jan 2015 | A1 |
20150053424 | Wiens et al. | Feb 2015 | A1 |
20150075770 | Fripp | Mar 2015 | A1 |
20150083391 | Bangert et al. | Mar 2015 | A1 |
20150083496 | Winslow | Mar 2015 | A1 |
20150090444 | Partouche | Apr 2015 | A1 |
20150107385 | Mullins et al. | Apr 2015 | A1 |
20150131410 | Clark | May 2015 | A1 |
20150218894 | Slack | Aug 2015 | A1 |
20150275657 | Deffenbaugh | Oct 2015 | A1 |
20150285066 | Keller | Oct 2015 | A1 |
20150292307 | Best | Oct 2015 | A1 |
20150292319 | Disko | Oct 2015 | A1 |
20150337648 | Zippel et al. | Nov 2015 | A1 |
20150337651 | Prammer | Nov 2015 | A1 |
20160024862 | Wilson et al. | Jan 2016 | A1 |
20160032715 | Mueller | Feb 2016 | A1 |
20160053610 | Switzer | Feb 2016 | A1 |
20160138348 | Kunec | May 2016 | A1 |
20160145954 | Helms et al. | May 2016 | A1 |
20160177639 | McIntosh et al. | Jun 2016 | A1 |
20160201664 | Robison et al. | Jul 2016 | A1 |
20160215592 | Helms et al. | Jul 2016 | A1 |
20160222731 | Bowley et al. | Aug 2016 | A1 |
20160230481 | Misson et al. | Aug 2016 | A1 |
20160245276 | Robison et al. | Aug 2016 | A1 |
20160290049 | Kedare | Oct 2016 | A1 |
20160291188 | Lim | Oct 2016 | A1 |
20160326867 | Prammer | Nov 2016 | A1 |
20160333682 | Griffing | Nov 2016 | A1 |
20160342916 | Arceneaux et al. | Nov 2016 | A1 |
20160376863 | Older et al. | Dec 2016 | A1 |
20170037683 | Heidecke et al. | Feb 2017 | A1 |
20170044854 | Hebebrand et al. | Feb 2017 | A1 |
20170044875 | Hebebrand et al. | Feb 2017 | A1 |
20170051568 | Wern et al. | Feb 2017 | A1 |
20170067303 | Thiemann et al. | Mar 2017 | A1 |
20170067320 | Zouhair et al. | Mar 2017 | A1 |
20170074075 | Liess | Mar 2017 | A1 |
20170204846 | Robison et al. | Jul 2017 | A1 |
20170211327 | Wern et al. | Jul 2017 | A1 |
20170211343 | Thiemann | Jul 2017 | A1 |
20170248009 | Fripp | Aug 2017 | A1 |
20170248012 | Donderici | Aug 2017 | A1 |
20170284164 | Holmes et al. | Oct 2017 | A1 |
20170335681 | Nguyen | Nov 2017 | A1 |
20170350199 | Pallini | Dec 2017 | A1 |
20170356288 | Switzer | Dec 2017 | A1 |
20180087374 | Robson | Mar 2018 | A1 |
20180087375 | Segura Dominguez | Mar 2018 | A1 |
20180135409 | Wilson | May 2018 | A1 |
20180252095 | Pridat | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2012201644 | Apr 2012 | AU |
2013205714 | May 2013 | AU |
2014215938 | Sep 2014 | AU |
2015234310 | Oct 2015 | AU |
2 707 050 | Jun 2009 | CA |
2 841 654 | Aug 2015 | CA |
2 944 327 | Oct 2015 | CA |
102007016822 | Oct 2008 | DE |
0 250 072 | Dec 1987 | EP |
1 619 349 | Jan 2006 | EP |
1 772 715 | Apr 2007 | EP |
1913228 | Apr 2008 | EP |
1961912 | Aug 2008 | EP |
1961913 | Aug 2008 | EP |
2085566 | Aug 2009 | EP |
2 322 357 | May 2011 | EP |
2808483 | Dec 2014 | EP |
3032025 | Jun 2016 | EP |
1487948 | Oct 1977 | GB |
2 077 812 | Dec 1981 | GB |
2 180 027 | Mar 1987 | GB |
2 228 025 | Aug 1990 | GB |
2 314 391 | Dec 1997 | GB |
2004079153 | Sep 2004 | WO |
2004101417 | Nov 2004 | WO |
2007001887 | Jan 2007 | WO |
2007070805 | Jun 2007 | WO |
2007127737 | Nov 2007 | WO |
2008005767 | Jan 2008 | WO |
2008007970 | Jan 2008 | WO |
2009076648 | Jun 2009 | WO |
2010057221 | May 2010 | WO |
2012021555 | Feb 2012 | WO |
2012100019 | Jul 2012 | WO |
2012115717 | Aug 2012 | WO |
2014056092 | Apr 2014 | WO |
2015000023 | Jan 2015 | WO |
2015119509 | Aug 2015 | WO |
2015127433 | Aug 2015 | WO |
2015176121 | Nov 2015 | WO |
2016160701 | Oct 2016 | WO |
2016197255 | Dec 2016 | WO |
2017044384 | Mar 2017 | WO |
2017040508 | Mar 2017 | WO |
2017146733 | Aug 2017 | WO |
2016197255 | Dec 2017 | WO |
Entry |
---|
A123 System; 14Ah Prismatic Pouch Cell; Nanophosphate® Lithium-Ion; www.a123systems.com; date unknown; 1 page. |
Streicher Load/Torque Cell Systems; date unknown; 1 page. |
3PS, Inc.; Enhanced Torque and Tension Sub with Integrated Turns; date unknown; 2 total pages. |
Lefevre, et al.; Drilling Technology; Deeper, more deviated wells push development of smart drill stem rotary shouldered connections; dated 2008; 2 total pages. |
PCT Invitaiton to Pay Additional Fees for International Application No. PCT/US2008/086699; dated Sep. 9, 2009; 7 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2008/086699; dated Sep. 11, 2009; 19 total pages. |
National Oilwell Varco; Rotary Shoulder Handbook; dated 2010; 116 total pages. |
Weatherford; TorkSub™ Stand-Alone Torque Measuring System; dated 2011-2014; 4 total pages. |
Australian Examination Report for Application No. 2008334992; dated Apr. 5, 2011; 2 total pages. |
European Search Report for Application No. 08 860 261.0-2315; dated Apr. 12, 2011; 4 total pages. |
Eaton; Spool Valve Hydraulic Motors; dated Sep. 2011; 16 total pages. |
European Extended Search Report for Application No. 12153779.9-2315; dated Apr. 5, 2012; 4 total pages. |
Australian Examination Report for Application No. 2012201644; dated May 15, 2013; 3 total pages. |
Warrior; 250E Electric Top Drive (250-TON); 250H Hydraulic Top Drive (250-TON); dated Apr. 2014; 4 total pages. |
Hydraulic Pumps & Motors; Fundamentals of Hydraulic Motors; dated Jun. 26, 2014; 6 total pages. |
Warrior; Move Pipe Better; 500E Electric Top Drive (500 ton-1000 hp); dated May 2015; 4 total pages. |
Canadian Office Action for Application No. 2,837,581; dated Aug. 24, 2015; 3 total pages. |
European Extended Search Report for Application No. 15166062.8-1610; dated Nov. 23, 2015; 6 total pages. |
Australian Examination Report for Application No. 2014215938; dated Feb. 4, 2016; 3 total pages. |
Rexroth; Bosch Group; Motors and Gearboxes; Asynchronous high-speed motors 1 MB for high speeds; dated Apr. 13, 2016; 6 total pages. |
Canadian Office Action for Application No. 2,837,581; dated Apr. 25, 2016; 3 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/061960; dated Jul. 25, 2016; 16 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049462; dated Nov. 22, 2016; 14 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050542; dated Nov. 25, 2016; 13 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/046458; dated Dec. 14, 2016; 16 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/047813; dated Jan. 12, 2017; 15 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050139; dated Feb. 20, 2017; 20 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014646; dated Apr. 4, 2017; 14 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014224; dated Jun. 8, 2017; 15 total pages. |
European Extended Search Report for Application No. 17152458.0-1609; dated Jun. 8, 2017; 7 total pages. |
Australian Examination Report for Application No. 2017200371; dated Sep. 19, 2017; 5 total pages. |
European Extended Search Report for Application No. 17195552.9-1614; dated Dec. 4, 2017; 6 total pages. |
Australian Examination Report for Application No. 2017200371; dated Feb. 8, 2018; 6 total pages. |
Canadian Office Action for Application No. 2,955,754; dated Mar. 28, 2018; 3 total pages. |
Australian Examination Report for Application No. 2017200371; dated May 2, 2018; 4 total pages. |
Canadian Office Action for Application No. 2,974,298; dated May 16, 2018; 3 total pages. |
European Patent Office; Extended European Search Report for Application No. 18157915.2; dated Jun. 6, 2018; 8 total pages. |
Canadian Office Action in related application CA 2,955,754 dated Jul. 17, 2018. |
EPO Extended European Search Report dated Jul. 19, 2018, for European Application No. 18159595.0. |
EPO Extended European Search Report dated Jul. 17, 2018, for European Application No. 18158050.7. |
Balltec Lifting Solutions, LiftLOK™ Brochure, “Highest integrity lifting tools for the harshest environments,” 2 pages. |
Balltec Lifting Solutions, CoilLOK™ Brochure, “Highest integrity hand-held coiled tubing handling tools,” 2 pages. |
Peters; Tool Coupler for Use With a Top Drive; U.S. Appl. No. 15/656,508, filed Jul. 21, 2017. (Application not attached to IDS.). |
Fuehring et al.; Tool Coupler With Rotating Coupling Method for Top Drive; U.S. Appl. No. 15/445,758, filed Feb. 28, 2017. (Application not attached to IDS.). |
Bell; Interchangeable Swivel Combined Multicoupler; U.S. Appl. No. 15/607,159, filed May 26, 2017 (Application not attached to IDS.). |
Amezaga; Dual Torque Transfer for Top Drive System; U.S. Appl. No. 15/447,881, filed Mar. 2, 2017. (Application not attached to IDS.). |
Zouhair; Coupler With Threaded Connection for Pipe Handler; U.S. Appl. No. 15/444,016, filed Feb. 27, 2017. (Application not attached to IDS.). |
Liess; Downhole Tool Coupling System; U.S. Appl. No. 15/670,897, filed Aug. 7, 2017. (Application not attached to IDS.). |
Muller et al; Combined Multi-Coupler With Rotating Locking Method for Top Drive; U.S. Appl. No. 15/721,216, filed Sep. 29, 2017. (Application not attached to IDS.). |
Amezaga et al; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/457,572, filed Mar. 13, 2017. (Application not attached to IDS.). |
Wiens; Combined Multi-Coupler With Locking Clamp Connection for Top Drive; U.S. Appl. No. 15/627,428, filed Jun. 19, 2017. (Application not attached to IDS.). |
Henke et al.; Tool Coupler With Sliding Coupling Members for Top Drive; U.S. Appl. No. 15/448,297, filed Mar. 2, 2017. (Application not attached to IDS.). |
Schoknecht et al.; Combined Multi-Coupler With Rotating Fixations for Top Drive; U.S. Appl. No. 15/447,926, filed Mar. 2, 2017. (Application not attached to IDS.). |
Metzlaff et al.; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/627,237, filed Jun. 19, 2017. (Application not attached to IDS.). |
Liess; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/656,914, filed Jul. 21, 2017. (Application not attached to IDS.). |
Liess et al.; Combined Multi-Coupler; U.S. Appl. No. 15/656,684, filed Jul. 21, 2017. (Application not attached to IDS). |
Amezaga et al.; Tool Coupler With Data and Signal Transfer Methods for Top Drive; U.S. Appl. No. 15/730,305, filed Oct. 11, 2017. (Application not attached to IDS). |
Liess; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/806,560, filed Nov. 8, 2017. (Application not attached to IDS). |
Cookson, Colter, “Inventions Speed Drilling, Cut Costs,” The American Oil & Gas Reporter, Sep. 2015, 2 pages. |
Ennaifer, Amine et al. , “Step Change in Well Testing Operations,” Oilfield Review, Autumn 2014: 26, No. 3, pp. 32-41. |
International Search Report and Written Opinion in PCT/US2018/042812 dated Oct. 17, 2018. |
Extended Search Report in application EP18177312.8 dated Nov. 6, 2018. |
EPO Partial European Search Report dated Jul. 31, 2018, for European Application No. 18159597.6. |
European Patent Office; Extended Search Report for Application No. 18160808.4; dated Sep. 20, 2018; 8 total pages. |
EPO Partial European Search Report dated Oct. 4, 2018, for European Patent Application No. 18159598.4. |
EPO Extended European Search Report dated Oct. 5, 2018, for European Patent Application No. 18173275.1. |
EPO Extended European Search Report dated Nov. 6, 2018, for European Application No. 18159597.6. |
PCT International Search Report and Written Opinion dated Oct. 23, 2018, for International Application No. PCT/US2018/044162. |
EPO Extended European Search Report dated Nov. 15, 2018, for European Application No. 18177311.0. |
EPO Partial Search Report dated Dec. 4, 2018, for European Patent Application No. 16754089.7. |
PCT International Search Report and Written Opinion dated Dec. 19, 2018, for International Application No. PCT/US2018/042813. |
PCT International Search Report and Written Opinion dated Jan. 3, 2019, for International Application No. PCT/US2018/0429021. |
International Preliminary Report on Patentability in related application PCT/US2016/046458 dated Feb. 13, 2018. |
EPO Extended European Search Report dated Feb. 18, 2019, for European Application No. 18159598.4. |
Office Action in related application EP 18177311.0 dated Mar. 3, 2019. |
EPO Result of Consultation dated Mar. 13, 2019, European Application No. 18177311.0. |
European Office Action dated Apr. 1, 2019 for Application No. 18173275.1. |
European Office Action in related application EP 16760375.2 dated Mar. 25, 2019. |
European Partial Search Report in related application EP 16754089.7 dated Dec. 20, 2018. |
European Search Report in related application EP 18198397.4 dated May 14, 2019. |
Office Action in related application AU2018236804 dated Jun. 11, 2019. |
European Examination Report in related application EP 16754089.7 dated Jun. 24, 2019. |
Mexican Office Action in related application MX/a/2012281 dated Nov. 20, 2020. |
Mexican Office Action for Mexican Application No. MX/a/2018/012281 dated Apr. 26, 2021. |
Canadian Office Action in related application CA 2995284 dated May 25, 2021. |
Canadian Office Action in related application CA 3,019,042 dated Mar. 25, 2022. |
European Office Action in related application EP 18198397.4-1002 dated Jun. 24, 2022. |
Number | Date | Country | |
---|---|---|---|
20190106977 A1 | Apr 2019 | US |