Embodiments of the present invention generally relate to equipment and methods for coupling a top drive to one or more tools. The coupling may transfer both axial load and torque bi-directionally from the top drive to the one or more tools.
A wellbore is formed to access hydrocarbon-bearing formations (e.g., crude oil and/or natural gas) or for geothermal power generation by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tool string. To drill within the wellbore to a predetermined depth, the tool string is often rotated by a top drive on a drilling rig. After drilling to a predetermined depth, the tool string and drill bit are removed, and a string of casing is lowered into the wellbore. Well construction and completion operations may then be conducted.
During drilling and well construction/completion, various tools are used which have to be attached to the top drive. The process of changing tools is very time consuming and dangerous, requiring personnel to work at heights. The attachments between the tools and the top drive typically include mechanical, electrical, optical, hydraulic, and/or pneumatic connections, conveying torque, load, data, signals, and/or power.
Typically, sections of a tool string are connected together with threaded connections. Such threaded connections are capable of transferring load. Right-hand (RH) threaded connections are also capable of transferring RH torque. However, application of left-hand (LH) torque to a tool string with RH threaded connections (and vice versa) risks breaking the string. Methods have been employed to obtain bi-directional torque holding capabilities for connections. Some examples of these bi-directional setting devices include thread locking mechanisms for saver subs, hydraulic locking rings, set screws, jam nuts, lock washers, keys, cross/thru-bolting, lock wires, clutches and thread locking compounds. However, these solutions have shortcomings. For example, many of the methods used to obtain bi-directional torque capabilities are limited by friction between component surfaces or compounds that typically result in a relative low torque resistant connection. Locking rings may provide only limited torque resistance, and it may be difficult to fully monitor any problem due to limited accessibility and location. For applications that require high bi-directional torque capabilities, only positive locking methods such as keys, clutches or cross/through-bolting are typically effective. Further, some high bi-directional torque connections require both turning and milling operations to manufacture, which increase the cost of the connection over just a turning operation required to manufacture a simple male-to-female threaded connection. Some high bi-directional torque connections also require significant additional components as compared to a simple male-to-female threaded connection, which adds to the cost.
Safer, faster, more reliable, and more efficient connections that are capable of conveying load, data, signals, power and/or bi-directional torque between the tool string and the top drive are needed.
Embodiments generally relate to apparatus and methods for coupling a top drive to one or more tools. The coupling may transfer both axial load and torque bi-directionally from the top drive to the one or more tools.
In an embodiment, a top drive system includes a drive unit having a drive stem; a plurality of sliding coupling members disposed on an exterior of the drive stem; a retainer to retain the plurality of sliding coupling members on the drive stem; and a torque profile on the drive stem. The top drive system also includes a tool adapter having a tool stem having a tool stem sleeve, wherein the drive stem extends through an interior of the tool stem sleeve; a plurality of coupling recesses on an interior of the tool stem sleeve and engagable with the sliding coupling members; and a sleeve torque profile engagable with the torque profile.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a drive stem of the drive unit into an interior of a tool stem sleeve of the tool adapter; coupling a torque between the drive unit and the tool adapter by engaging a torque profile of the drive stem with a sleeve torque profile of the tool stem sleeve; and coupling a load between the drive unit and the tool adapter by engaging a plurality of sliding coupling members on the drive stem with a plurality of coupling recesses on the interior of the tool stem sleeve.
In an embodiment, a drive unit of a top drive system includes a drive stem having a plurality of ports from an exterior thereof to an interior thereof; a plurality of sliding coupling members disposed in the ports; and a coupling collar encircling the drive stem and having actuation surfaces and recessed surfaces on an interior thereof, wherein the recessed surfaces align with the ports when the coupling collar is in a first position, and the actuation surfaces align with the ports when the coupling collar is in a second position.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a tool stem of the tool adapter into an interior of a drive stem of the drive unit; engaging coupling recesses of the tool stem with sliding coupling members of the drive stem by moving the sliding coupling members to an extended position; and securing the sliding coupling members in the extended position.
In an embodiment, a drive unit of a top drive system includes a drive stem having a coupling recess; a plurality of ports in the drive stem connected to the coupling recess; a plurality of sliding coupling members movable between a retracted position and an extended position in the ports; and a plurality of vector transmission units operationally coupled to the sliding coupling members to move the sliding coupling members between the retracted position and the extended position.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a tool stem of the tool adapter into an interior of a drive stem of the drive unit; mating a polygonal head of the tool stem with a coupling recess of the drive stem; and engaging coupling recesses of the tool stem with sliding coupling members of the drive stem by moving the sliding coupling members to an extended position.
In an embodiment, a top drive system includes a drive unit having a drive stem; a plurality of coupling recesses on an interior of the drive stem; a drive torque profile on the drive stem; and first portions of a hydraulic coupling unit; and a tool adapter having a tool stem, wherein the tool stem extends through an interior of the drive stem; a plurality of sliding coupling members disposed on an exterior of the tool stem and engagable with the coupling recesses on the drive stem; a tool torque profile on the tool stem and engagable with the drive torque profile; and second portions of the hydraulic coupling unit.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a tool stem of the tool adapter into an interior of a drive stem of the drive unit; coupling a torque between the drive unit and the tool adapter by engaging a drive torque profile of the drive stem with a tool torque profile of the tool stem; and coupling a load between the drive unit and the tool adapter by: producing a control signal; responding to the control signal by moving sliding coupling members on the tool stem to an extended position; and engaging the sliding coupling members in the extended position with coupling recesses on the interior of the drive stem.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments provide apparatus and methods for coupling a top drive to one or more tools. The coupling may transfer torque bi-directionally from the top drive to the one or more tools. The coupling may provide at least one of mechanical, electrical, optical, hydraulic, and pneumatic connection. The coupling may convey at least one of torque, load, data, signals, and power. For example, axial loads of tool strings can be expected to be several hundred tons, up to, including, and sometimes surpassing 750 tons. Required torque transmission can be tens of thousands of foot-pounds, up to, including, and sometimes surpassing 100 thousand foot-pounds. Embodiments disclosed herein may provide axial connection integrity, capable to support at least one of high axial loads, good sealability, resistance to bending, high flow rates, and high flow pressures.
Some of the benefits provided by embodiments of this disclosure include a reliable method to transfer full bi-directional torque, thereby reducing the risk of accidental breakout of threaded connections along the tool string. Embodiments of this disclosure also provide a fast, hands-free method to connect and transfer power from the drive unit to the tool adapter. Embodiments provide automatic connection for power and data communications. Embodiments for quick tool change include at least one connection port for fluid and data transmission. Embodiments also provide axial load and torque transfer mechanisms necessary for oil rig operations. The connection process may be hands free and/or faster than the conventional tool changeover methods for top drives.
In some embodiments, sliding coupling members may use a compressive force, such as in a spring, to apply pressure so to hold a ball or nose nested in some sort of hole or other receptacle. Thus two or more elements of equipment can be aligned or fixed into a determined relative position. In some embodiments, sliding coupling members such as indexing plungers may have a beveled or rounded nose that inserts easily into an indexing receptacle. In some embodiments, indexing plungers may include features like cam action, lock-out or non lock-out types, threaded bodies, weldable mounting flanges, long knobs, plate mounts, ring or L-handles, etc. In some embodiments, sliding coupling members such as ball plungers may have a ball instead of a nose. The shallow depth of the ball may beneficially allow for easy movement in and out of position. In some embodiments, ball plungers may include push-fit styles, threaded bodies, slotted heads, etc. In some embodiments, sliding coupling members such as spring plungers may have a nose designed to allow for movement when a lateral force is applied. In some embodiments, hand-retractable spring plungers may include a knob for manual retraction of the plunger. In some embodiments, side thrust pins may fix parts and holding them in place with constant pressure. In some embodiments, quick release pins may consist of a rod or stem, from which small side securing pins may protrude. In some embodiments, a button in the handle may retract or extend these pins so that the quick release pin can be removed or secured in place. Sliding coupling members such as indexing, spring, and ball plungers, and their accessories, may also referred to as: spring loaded devices, detent pins, hand retractable pins, buspring loaded pins, bspring loaded pins, button handle pins, shackle pins, locating pins, indexing pins, retracting pins, spring loaded pins, receptacles and lanyards, rapid release pins, t-handle release pins, ball chains, self-locking rapid release pins, side thrust pins, thrust pins, spring loaded shells, ball buttons, spring loaded positioning elements, hand retractable spring plungers, lock-out spring plungers, non lock-out plungers, spacer bushings, and Clevis pins,
In some embodiments, a threaded connection transfers axial load between the drive unit and the tool adapter. In some embodiments, the torque transfer path from the top drive system to the tool string bypasses the threaded connection between the drive unit and the tool adapter. This may allow full bi-directional torque to be applied in the tool string. In comparison, systems having torque transfer path through the threaded connections between the drive unit and the tool adapter risk backing out the main threaded connection while rotating in the breakout direction.
As illustrated in
Also illustrated in
Also illustrated in
As would be understood by one of ordinary skill in the art with the benefit of this disclosure, drive stem 180 may support the axial load of tool string 2 by coupling to tool stem 160 with sliding coupling members 171. Therefore, the number and sizing of sliding coupling members 171 (and, therefore, the number and sizing of coupling recesses 181, coupling recesses 191, and ports of retainer 182) may be selected to support the expected axial load. For the same sizing, an increased number of sliding coupling members 171 may be desired to support an increased expected axial load. For the same number, an increased sizing of sliding coupling members 171 may be desired to support an increased expected axial load.
As illustrated in
As illustrated in
Drive unit 110 may be coupled to tool adapter 150 in order to transfer bi-directional torque, load, power, data, and/or signals between the top drive and the tool. Coupling of drive unit 110 to tool adapter 150 may proceed as a multi-step process. In one embodiment, the coupling begins with torque coupling between drive stem 180 and tool stem 160. Tool stem 160 may be oriented and/or aligned below drive stem 180. Tool stem 160 may be oriented so that sleeve torque profile 192 aligns with torque profile 195. Drive stem 180 may be stabbed into the interior of tool stem sleeve 190. Tool stem 160 may be raised relative to drive stem 180 (and/or drive stem 180 may be lowered relative to tool stem 160) so that sleeve torque profile 192 fully mates with and/or engages torque profile 195. The sleeve torque profile 192 and/or the torque profile 195 may have guiding chamfers. It should be appreciated that other torque coupling types and/or configurations may be considered to accommodate manufacturing and operational conditions. Once sleeve torque profile 192 is mated with torque profile 195, bi-directional torque may be transferred between the top drive and the tool. For example, torque may be transferred from the motors 140 to the drive gears 130, through the drive gear profiles 185 to the drive stem 180, through the torque profiles 195 to the sleeve torque profile 192, to the tool stem sleeve 190 of the tool stem 160, and thus to the tool string 2. When tool stem 160 is coupled to drive stem 180, as shown in
Coupling of drive unit 110 to tool adapter 150 may proceed with axial load coupling between drive stem 180 and tool stem 160. With drive stem 180 extended through an interior of tool stem sleeve 190, and with sleeve torque profile 192 mated with torque profile 195, coupling recesses 181 on drive stem 180 may be aligned with coupling recesses 191 on tool stem sleeve 190 so that sliding coupling members 171 may move therebetween. Sliding coupling members 171 may move to an extended position in coupling recesses 181 of drive stem 180, and thus into coupling recesses 191 of tool stem sleeve 190. For example, piston 186 may move to the lower position, thereby moving sleeve 184 to cause sliding coupling members 171 to be in the extended position. In some embodiments, an actuator may move piston 186 to the lower position. In some embodiments, a locking feature may secure sliding coupling members 171 in the extended position. In some embodiments, the locking feature may secure piston 186 in the lower position. When sliding coupling members 171 are in the extended position, axial load may be transferred from tool stem 160 through tool stem sleeve 190, to sliding coupling members 171, to drive stem 180, and thereby to drive unit 110.
In some embodiments, coupling drive stem 180 to tool stem 160 may be facilitated with various sensors, actuators, couplers, and/or adapters. For example, drive stem 180 may be first oriented relative to tool stem 160 so that sleeve torque profile 192 aligns with torque profile 195. A sensor (e.g., an optical sensor) may be disposed at the base of drive stem 180. The sensor may be configured to detect a marker (e.g., a reflector) disposed at the top of tool stem 160. Drive stem 180 may be rotated relative to tool stem 160 until the sensor detects alignment with the marker. For example, motors 140 may rotate drive stem 180 to align sleeve torque profile 192 with torque profile 195. In some embodiments, multiple markers may be utilized. For example, drive stem 180 may be appropriately oriented in two or more orientations relative to tool stem 160. The sensor need only detect alignment with the first marker to identify appropriate orientation of drive stem 180 relative to tool stem 160. As another example, sensors 164 may be disposed on coupling bracket 163 (
As illustrated in
Also illustrated in
As before, coupling of drive unit 210 to tool adapter 250 may proceed as a multi-step process. In one embodiment, illustrated in
Coupling of drive unit 210 to tool adapter 250 may proceed as illustrated in
Coupling of drive unit 210 to tool adapter 250 may proceed as illustrated in
De-coupling drive unit 210 from tool adapter 250 may proceed essentially in the reverse of the above-stated coupling steps. In some embodiments, with coupling collar 290 in the raised position, actuators (not shown) may slide sliding coupling members 271 outwardly (away from central axis 201) through ports 272. For example, electromagnetic actuators may remove sliding coupling members 271 from engagement with coupling recesses 261 on tool stem 260.
Vector transmission unit 390 may actuate sliding coupling members 371 by producing linear force in a first direction and converting it to linear force in a second direction. As illustrated in
Also illustrated in
As before, coupling of drive unit 310 to tool adapter 350 may proceed as a multi-step process. In one embodiment, illustrated in
Coupling of drive unit 310 to tool adapter 350 may proceed with axial load coupling between drive stem 380 and tool stem 360, as illustrated in
Similar to torque profile 195, drive torque profile 495 may be an axially symmetrical or axially non-symmetrical profile capable of conveying torque around central bore 465. For example, as illustrated in
Sliding coupling members 471 in ports 472 may be distributed axially symmetrically or axially non-symmetrically on tool stem 460. Sliding coupling members 471 in ports 472 may be distributed symmetrically or non-symmetrically along an axial length of tool stem 460. Sliding coupling members 471 may be at least partially movable into and out of coupling recesses 481 on drive stem 480 when tool stem 460 is stabbed into an interior of drive stem 480. The sliding coupling members 471 may be sized and shaped identically, similarly, or non-similarly. Each coupling recess 481 may be sized and shaped to allow its respective sliding coupling member 471 to move at least partially into and out of the coupling recess 481.
Hydraulic coupling unit 490 may actuate sliding coupling members 471 by producing a control signal, such as a hydraulic impulse. As illustrated in
As before, coupling of drive unit 410 to tool adapter 450 may proceed as a multi-step process. In one embodiment, illustrated in
Coupling of drive unit 410 to tool adapter 450 may proceed with axial load coupling between drive stem 480 and tool stem 460, as illustrated in
De-coupling drive unit 410 from tool adapter 450 may proceed essentially in the reverse of the above-stated coupling steps. In some embodiments, hydraulic coupling unit 490 may generate a second control signal to cause sliding coupling members 471 to slide inwardly through ports 472. For example, plunger 482 may provide a second hydraulic impulse to cylinder 462. The second hydraulic impulse may cause hydraulic transmission 463 on tool stem 460 to move sliding coupling members 471 to a retracted in ports 472.
An example of the functioning of hydraulic transmission 463 of hydraulic coupling unit 490 is illustrated in
It should be understood that the components of tool couplers described herein could be usefully implemented in reverse configurations. For example,
It should be appreciated that, for each top drive system 100, 200, 300, 400, a variety of sensors, actuators, and/or adapters types and/or configurations may be considered to accommodate manufacturing and operational conditions. The actuators may be, for example, worm drives, hydraulic cylinders, compensation cylinders, etc. The actuators may be hydraulically, pneumatically, electrically, and/or manually controlled. In some embodiments, multiple control mechanism may be utilized to provide redundancy. One or more sensors may be used to monitor relative positions of the components of the top drive system. The sensors may be position sensors, rotation sensors, pressure sensors, optical sensors, magnetic sensors, etc. In some embodiments, stop surfaces may be used in conjunction with or in lieu of sensors to identify when components are appropriately positioned and/or oriented. Likewise, optical guides may be utilized to identify or confirm when components are appropriately positioned and/or oriented. In some embodiments, guide elements (e.g., pins and holes, chamfers, etc.) may assist in aligning and/or orienting the components of each top drive system 100, 200, 300, 400. Bearings and seals may be disposed between components to provide support, cushioning, rotational freedom, and/or fluid management.
In an embodiment, a top drive system includes a drive unit having a drive stem; a plurality of sliding coupling members disposed on an exterior of the drive stem; a retainer to retain the plurality of sliding coupling members on the drive stem; and a torque profile on the drive stem. The top drive system also includes a tool adapter having a tool stem having a tool stem sleeve, wherein the drive stem extends through an interior of the tool stem sleeve; a plurality of coupling recesses on an interior of the tool stem sleeve and engagable with the sliding coupling members; and a sleeve torque profile engagable with the torque profile.
In one or more embodiments disclosed herein, the top drive system also includes a load coupling comprising engagement of the sliding coupling members with the coupling recesses on the tool stem sleeve.
In one or more embodiments disclosed herein, the top drive system also includes a torque coupling comprising engagement of the torque profile with the sleeve torque profile.
In one or more embodiments disclosed herein, the torque profile is a plurality of lugs distributed around a central bore of the drive stem.
In one or more embodiments disclosed herein, the torque profile has a radial extent at least as wide as the tool stem sleeve.
In one or more embodiments disclosed herein, each sliding coupling member is at least partially disposed in a coupling recess on the drive stem.
In one or more embodiments disclosed herein, the top drive system also includes a piston coupled to the retainer, wherein movement of the piston causes the sliding coupling members to move between an extended position and a retracted position.
In one or more embodiments disclosed herein, the top drive system also includes a recess on the drive stem for each sliding coupling member, wherein each sliding coupling member is partially disposed in its respective recess on the drive stem when in the retracted position.
In one or more embodiments disclosed herein, each sliding coupling member is partially disposed in one of the coupling recesses on the tool stem sleeve when in the extended position.
In one or more embodiments disclosed herein, the top drive system also includes a first coupling bracket on the torque profile and a second coupling bracket on the sleeve torque profile.
In one or more embodiments disclosed herein, the top drive system also includes at least one coupling between the drive unit and the tool adapter selected from a group consisting of: threaded couplings, hydraulic couplings, pneumatic couplings, electronic couplings, fiber optic couplings, power couplings, data couplings, signal couplings, bi-directional torque couplings, axial load couplings, power couplings, data couplings, and signal couplings.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a drive stem of the drive unit into an interior of a tool stem sleeve of the tool adapter; coupling a torque between the drive unit and the tool adapter by engaging a torque profile of the drive stem with a sleeve torque profile of the tool stem sleeve; and coupling a load between the drive unit and the tool adapter by engaging a plurality of sliding coupling members on the drive stem with a plurality of coupling recesses on the interior of the tool stem sleeve.
In one or more embodiments disclosed herein, coupling the load comprises moving the sliding coupling members from a retracted position to an extended position.
In one or more embodiments disclosed herein, coupling the load further comprises moving a piston from an upper position to a lower position to move the sliding coupling members from the retracted position to the extended position.
In one or more embodiments disclosed herein, the method also includes securing the sliding coupling members in the extended position.
In one or more embodiments disclosed herein, the method also includes aligning the torque profile with the sleeve torque profile before stabbing the drive stem into to the interior of the tool stem sleeve.
In one or more embodiments disclosed herein, the method also includes aligning the sliding coupling members with the coupling recesses on the tool stem sleeve before stabbing the drive stem into to the interior of the tool stem sleeve.
In one or more embodiments disclosed herein, the method also includes forming a coupling between the drive unit and the tool adapter, wherein the coupling is selected from a group consisting of: threaded couplings, hydraulic couplings, pneumatic couplings, electronic couplings, fiber optic couplings, power couplings, data couplings, signal couplings, bi-directional torque couplings, axial load couplings, power couplings, data couplings, and signal couplings.
In an embodiment, a drive unit of a top drive system includes a drive stem having a plurality of ports from an exterior thereof to an interior thereof; a plurality of sliding coupling members disposed in the ports; and a coupling collar encircling the drive stem and having actuation surfaces and recessed surfaces on an interior thereof, wherein the recessed surfaces align with the ports when the coupling collar is in a first position, and the actuation surfaces align with the ports when the coupling collar is in a second position.
In one or more embodiments disclosed herein, the ports prevent the sliding coupling members from fully entering into the interior of the drive stem.
In one or more embodiments disclosed herein, a radial depth of the recessed surfaces may be at least as large as a radial depth of the actuation surfaces.
In one or more embodiments disclosed herein, the first position is a raised position.
In one or more embodiments disclosed herein, the drive unit also includes spring elements between the sliding coupling members and the coupling collar.
In one or more embodiments disclosed herein, the drive unit also includes actuators to move the coupling collar relative to the drive stem between the first position and the second position.
In one or more embodiments disclosed herein, the top drive system also includes a tool stem having coupling recesses engagable with the sliding coupling members.
In one or more embodiments disclosed herein, the top drive system also includes a load coupling comprising engagement of the sliding coupling members with the coupling recesses.
In one or more embodiments disclosed herein, the top drive system also includes a torque coupling comprising engagement of the sliding coupling members with the coupling recesses.
In one or more embodiments disclosed herein, the tool stem has a tapered top end.
In one or more embodiments disclosed herein, a number of the coupling recesses exceeds a number of the ports.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a tool stem of the tool adapter into an interior of a drive stem of the drive unit; engaging coupling recesses of the tool stem with sliding coupling members of the drive stem by moving the sliding coupling members to an extended position; and securing the sliding coupling members in the extended position.
In one or more embodiments disclosed herein, the method also includes coupling a torque between the drive unit and the tool adapter by engaging the coupling recesses with the sliding coupling members; and coupling a load between the drive unit and the tool adapter by engaging the coupling recesses with the sliding coupling members.
In one or more embodiments disclosed herein, engaging the coupling recesses with the sliding coupling members comprises moving a coupling collar from a raised position to a lowered position.
In one or more embodiments disclosed herein, the method also includes holding the coupling collar in the raised position while stabbing the tool stem into the interior of the drive stem.
In one or more embodiments disclosed herein, securing the sliding coupling members in the extended position comprises securing a coupling collar in a lowered position.
In one or more embodiments disclosed herein, stabbing the tool stem into the interior of the drive stem comprises engaging a tapered top end of the tool stem with the sliding coupling members.
In one or more embodiments disclosed herein, the sliding coupling members are disposed in ports on the drive stem, the method further comprising aligning the coupling recesses with the ports before stabbing the tool stem into to the interior of the drive stem.
In one or more embodiments disclosed herein, the method also includes forming a coupling between the drive unit and the tool adapter, wherein the coupling is selected from a group consisting of: threaded couplings, hydraulic couplings, pneumatic couplings, electronic couplings, fiber optic couplings, power couplings, data couplings, signal couplings, bi-directional torque couplings, axial load couplings, power couplings, data couplings, and signal couplings.
In an embodiment, a drive unit of a top drive system includes a drive stem having a coupling recess; a plurality of ports in the drive stem connected to the coupling recess; a plurality of sliding coupling members movable between a retracted position and an extended position in the ports; and a plurality of transmission units operationally coupled to the sliding coupling members to move the sliding coupling members between the retracted position and the extended position.
In one or more embodiments disclosed herein, each transmission unit comprises an actuator capable of producing linear force in a first direction, wherein the first direction is orthogonal to the ports of the drive stem.
In one or more embodiments disclosed herein, each transmission unit further comprises a transmission member capable of converting the linear force in the first direction to a linear force in a second direction parallel to the ports of the drive stem.
In one or more embodiments disclosed herein, the transmission member comprises an angled rod that engages a transmission guide of the sliding coupling member.
In one or more embodiments disclosed herein, each transmission unit is housed within a wall of the drive stem.
In one or more embodiments disclosed herein, the top drive system also includes a tool stem, wherein: the tool stem has a polygonal head configured to mate with the coupling recess of the drive stem; and the tool stem has a coupling recess engagable with the sliding coupling members.
In one or more embodiments disclosed herein, the top drive system also includes a load coupling comprising engagement of the sliding coupling members with the coupling recess of the tool stem.
In one or more embodiments disclosed herein, the top drive system also includes a torque coupling comprising mating of the polygonal head with the coupling recess of the drive stem.
In one or more embodiments disclosed herein, the tool stem has a tapered top end.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a tool stem of the tool adapter into an interior of a drive stem of the drive unit; mating a polygonal head of the tool stem with a coupling recess of the drive stem; and engaging coupling recesses of the tool stem with sliding coupling members of the drive stem by moving the sliding coupling members to an extended position.
In one or more embodiments disclosed herein, the method also includes coupling a torque between the drive unit and the tool adapter by mating the polygonal head with the coupling recesses of the drive stem; and coupling a load between the drive unit and the tool adapter by engaging the coupling recesses of the tool stem with the sliding coupling members.
In one or more embodiments disclosed herein, the method also includes aligning the polygonal head with the coupling recess of the drive stem before stabbing the tool stem into to the interior of the drive stem.
In one or more embodiments disclosed herein, the method also includes maintaining the sliding coupling members in a retracted position while stabbing the tool stem into the interior of the drive stem.
In one or more embodiments disclosed herein, the method also includes exerting vertical force on transmission members with actuators; and exerting horizontal force on the sliding coupling members with the transmission members.
In one or more embodiments disclosed herein, engaging the coupling recess of the tool stem with the sliding coupling members comprises moving the sliding coupling members to an extended position.
In one or more embodiments disclosed herein, the method also includes securing the sliding coupling members in the extended position.
In an embodiment, a top drive system includes a drive unit having a drive stem; a plurality of coupling recesses on an interior of the drive stem; a drive torque profile on the drive stem; and first portions of a hydraulic coupling unit. The top drive system also includes a tool adapter having a tool stem, wherein the tool stem extends through an interior of the drive stem; a plurality of sliding coupling members disposed on an exterior of the tool stem and engagable with the coupling recesses on the drive stem; a tool torque profile on the tool stem and engagable with the drive torque profile; and second portions of the hydraulic coupling unit.
In one or more embodiments disclosed herein, the top drive system also includes a load coupling comprising engagement of the sliding coupling members with the coupling recesses on the drive stem.
In one or more embodiments disclosed herein, the top drive system also includes a torque coupling comprising engagement of the drive torque profile with the tool torque profile.
In one or more embodiments disclosed herein, the hydraulic coupling unit causes the sliding coupling members to move between a retracted position and an extended position in ports of the tool stem.
In one or more embodiments disclosed herein, each sliding coupling member is at least partially disposed in a coupling recess on the tool stem when in the extended position.
In one or more embodiments disclosed herein, the first portions of the hydraulic coupling unit encircle a central bore of the drive stem.
In one or more embodiments disclosed herein, the drive torque profile comprises a plurality of pins, and the tool torque profile comprises a plurality of holes.
In one or more embodiments disclosed herein, the first portions of the hydraulic coupling unit comprise a plunger, and the second portions of the hydraulic coupling unit comprise a cylinder.
In one or more embodiments disclosed herein, the second portions of the hydraulic coupling unit further comprising an upper reservoir, a middle reservoir, a lower reservoir, a valve between the upper reservoir and the middle reservoir, and a lower cylinder in the lower reservoir.
In an embodiment, a method of coupling a drive unit to a tool adapter includes positioning the tool adapter below the drive unit; stabbing a tool stem of the tool adapter into an interior of a drive stem of the drive unit; coupling a torque between the drive unit and the tool adapter by engaging a drive torque profile of the drive stem with a tool torque profile of the tool stem; and coupling a load between the drive unit and the tool adapter by: producing a control signal; responding to the control signal by moving sliding coupling members on the tool stem to an extended position; and engaging the sliding coupling members in the extended position with coupling recesses on the interior of the drive stem.
In one or more embodiments disclosed herein, the control signal is a hydraulic impulse.
In one or more embodiments disclosed herein, the method also includes aligning the drive torque profile with the tool torque profile before stabbing the tool stem into to the interior of the drive stem.
In one or more embodiments disclosed herein, the method also includes maintaining the sliding coupling members in a retracted position while stabbing the tool stem into the interior of the drive stem.
In one or more embodiments disclosed herein, producing the control signal comprises engaging a plunger of the drive stem with a cylinder of the tool stem.
In one or more embodiments disclosed herein, the method also includes securing the sliding coupling members in the extended position.
In one or more embodiments disclosed herein, moving the sliding coupling members to an extended position comprises: opening a valve between an upper reservoir and a middle reservoir on the tool stem; transferring hydraulic pressure from the upper reservoir to the middle reservoir; and applying a force to the sliding coupling members with the hydraulic pressure in the middle reservoir.
In one or more embodiments disclosed herein, the method also includes forming a coupling between the drive unit and the tool adapter, wherein the coupling is selected from a group consisting of: threaded couplings, hydraulic couplings, pneumatic couplings, electronic couplings, fiber optic couplings, power couplings, data couplings, signal couplings, bi-directional torque couplings, axial load couplings, power couplings, data couplings, and signal couplings.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
1377575 | Greve | May 1921 | A |
1822444 | MacClatchie | Sep 1931 | A |
2370354 | Hurst | Feb 1945 | A |
3147992 | Haeber et al. | Sep 1964 | A |
3354951 | Savage et al. | Nov 1967 | A |
3385370 | Knox et al. | May 1968 | A |
3662842 | Bromell | May 1972 | A |
3698426 | Litchfield et al. | Oct 1972 | A |
3747675 | Brown | Jul 1973 | A |
3766991 | Brown | Oct 1973 | A |
3774697 | Brown | Nov 1973 | A |
3776320 | Brown | Dec 1973 | A |
3842619 | Bychurch, Sr. | Oct 1974 | A |
3888318 | Brown | Jun 1975 | A |
3899024 | Tonnelli et al. | Aug 1975 | A |
3913687 | Gyongyosi et al. | Oct 1975 | A |
3915244 | Brown | Oct 1975 | A |
3964552 | Slator | Jun 1976 | A |
4022284 | Crow | May 1977 | A |
4051587 | Boyadjieff | Oct 1977 | A |
4100968 | Delano | Jul 1978 | A |
4192155 | Gray | Mar 1980 | A |
4199847 | Owens | Apr 1980 | A |
4235469 | Denny et al. | Nov 1980 | A |
4364407 | Hilliard | Dec 1982 | A |
4377179 | Giebeler | Mar 1983 | A |
4402239 | Mooney | Sep 1983 | A |
4449596 | Boyadjieff | May 1984 | A |
4478244 | Garrett | Oct 1984 | A |
4497224 | Jurgens | Feb 1985 | A |
4593773 | Skeie | Jun 1986 | A |
4762187 | Haney | Aug 1988 | A |
4776617 | Sato | Oct 1988 | A |
4779688 | Baugh | Oct 1988 | A |
4791997 | Krasnov | Dec 1988 | A |
4813493 | Shaw et al. | Mar 1989 | A |
4815546 | Haney et al. | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4844181 | Bassinger | Jul 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4955949 | Bailey et al. | Sep 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4972741 | Sibille | Nov 1990 | A |
4981180 | Price | Jan 1991 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5036927 | Willis | Aug 1991 | A |
5099725 | Bouligny, Jr. et al. | Mar 1992 | A |
5152554 | LaFleur et al. | Oct 1992 | A |
5172940 | Usui et al. | Dec 1992 | A |
5191939 | Stokley | Mar 1993 | A |
5215153 | Younes | Jun 1993 | A |
5245877 | Ruark | Sep 1993 | A |
5282653 | LaFleur et al. | Feb 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5348351 | LaFleur et al. | Sep 1994 | A |
5385514 | Dawe | Jan 1995 | A |
5433279 | Tessari et al. | Jul 1995 | A |
5441310 | Barrett et al. | Aug 1995 | A |
5456320 | Baker | Oct 1995 | A |
5479988 | Appleton | Jan 1996 | A |
5486223 | Carden | Jan 1996 | A |
5501280 | Brisco | Mar 1996 | A |
5509442 | Claycomb | Apr 1996 | A |
5577566 | Albright et al. | Nov 1996 | A |
5584343 | Coone | Dec 1996 | A |
5645131 | Trevisani | Jul 1997 | A |
5664310 | Penisson | Sep 1997 | A |
5682952 | Stokley | Nov 1997 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5778742 | Stuart | Jul 1998 | A |
5839330 | Stokka | Nov 1998 | A |
5909768 | Castille et al. | Jun 1999 | A |
5918673 | Hawkins et al. | Jul 1999 | A |
5950724 | Giebeler | Sep 1999 | A |
5967477 | Walmsley | Oct 1999 | A |
5971079 | Mullins | Oct 1999 | A |
5992520 | Schultz et al. | Nov 1999 | A |
6003412 | Dlask et al. | Dec 1999 | A |
6050348 | Richarson | Apr 2000 | A |
6053191 | Hussey | Apr 2000 | A |
6102116 | Giovanni | Aug 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6173777 | Mullins | Jan 2001 | B1 |
6276450 | Seneviratne | Aug 2001 | B1 |
6279654 | Mosing et al. | Aug 2001 | B1 |
6289911 | Majkovic | Sep 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6328343 | Rosie et al. | Dec 2001 | B1 |
6378630 | Ritorto et al. | Apr 2002 | B1 |
6390190 | Mullins | May 2002 | B2 |
6401811 | Coone | Jun 2002 | B1 |
6415862 | Mullins | Jul 2002 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6460620 | LaFleur | Oct 2002 | B1 |
6527047 | Pietras | Mar 2003 | B1 |
6536520 | Snider et al. | Mar 2003 | B1 |
6571876 | Szarka | Jun 2003 | B2 |
6578632 | Mullins | Jun 2003 | B2 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6604578 | Mullins | Aug 2003 | B2 |
6622796 | Pietras | Sep 2003 | B1 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6640824 | Majkovic | Nov 2003 | B2 |
6666273 | Laurel | Dec 2003 | B2 |
6675889 | Mullins et al. | Jan 2004 | B1 |
6679333 | York et al. | Jan 2004 | B2 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6705405 | Pietras | Mar 2004 | B1 |
6715542 | Mullins | Apr 2004 | B2 |
6719046 | Mullins | Apr 2004 | B2 |
6722425 | Mullins | Apr 2004 | B2 |
6725938 | Pietras | Apr 2004 | B1 |
6732819 | Wenzel | May 2004 | B2 |
6732822 | Slack et al. | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6742596 | Haugen | Jun 2004 | B2 |
6779599 | Mullins et al. | Aug 2004 | B2 |
6832656 | Fournier, Jr. et al. | Dec 2004 | B2 |
6883605 | Arceneaux et al. | Apr 2005 | B2 |
6892835 | Shahin et al. | May 2005 | B2 |
6908121 | Hirth et al. | Jun 2005 | B2 |
6925807 | Jones et al. | Aug 2005 | B2 |
6938697 | Haugen | Sep 2005 | B2 |
6976298 | Pietras | Dec 2005 | B1 |
6994176 | Shahin et al. | Feb 2006 | B2 |
7000503 | Dagenais et al. | Feb 2006 | B2 |
7001065 | Dishaw et al. | Feb 2006 | B2 |
7004259 | Pietras | Feb 2006 | B2 |
7007753 | Robichaux et al. | Mar 2006 | B2 |
7017671 | Williford | Mar 2006 | B2 |
7021374 | Pietras | Apr 2006 | B2 |
7025130 | Bailey et al. | Apr 2006 | B2 |
7073598 | Haugen | Jul 2006 | B2 |
7090021 | Pietras | Aug 2006 | B2 |
7096948 | Mosing et al. | Aug 2006 | B2 |
7114235 | Jansch et al. | Oct 2006 | B2 |
7128161 | Pietras | Oct 2006 | B2 |
7137454 | Pietras | Nov 2006 | B2 |
7140443 | Beierbach et al. | Nov 2006 | B2 |
7143849 | Shahin et al. | Dec 2006 | B2 |
7147254 | Niven et al. | Dec 2006 | B2 |
7159654 | Ellison et al. | Jan 2007 | B2 |
7178612 | Belik | Feb 2007 | B2 |
7213656 | Pietras | May 2007 | B2 |
7219744 | Pietras | May 2007 | B2 |
7231969 | Folk et al. | Jun 2007 | B2 |
7270189 | Brown et al. | Sep 2007 | B2 |
7281451 | Schulze Beckinghausen | Oct 2007 | B2 |
7281587 | Haugen | Oct 2007 | B2 |
7303022 | Tilton et al. | Dec 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7353880 | Pietras | Apr 2008 | B2 |
7448456 | Shahin et al. | Nov 2008 | B2 |
7451826 | Pietras | Nov 2008 | B2 |
7490677 | Buytaert et al. | Feb 2009 | B2 |
7503397 | Giroux et al. | Mar 2009 | B2 |
7509722 | Shahin et al. | Mar 2009 | B2 |
7513300 | Pietras et al. | Apr 2009 | B2 |
7552764 | Weems | Jun 2009 | B2 |
7591304 | Juhasz et al. | Sep 2009 | B2 |
7617866 | Pietras | Nov 2009 | B2 |
7635026 | Mosing et al. | Dec 2009 | B2 |
7665515 | Mullins | Feb 2010 | B2 |
7665530 | Wells et al. | Feb 2010 | B2 |
7665531 | Pietras | Feb 2010 | B2 |
7669662 | Pietras | Mar 2010 | B2 |
7690422 | Swietlik et al. | Apr 2010 | B2 |
7694730 | Angman | Apr 2010 | B2 |
7694744 | Shahin | Apr 2010 | B2 |
7699121 | Juhasz et al. | Apr 2010 | B2 |
7712523 | Snider et al. | May 2010 | B2 |
7730698 | Montano et al. | Jun 2010 | B1 |
7744140 | Rowley | Jun 2010 | B2 |
7757759 | Jahn et al. | Jul 2010 | B2 |
7779922 | Harris et al. | Aug 2010 | B1 |
7793719 | Snider et al. | Sep 2010 | B2 |
7817062 | Li et al. | Oct 2010 | B1 |
7828085 | Kuttel et al. | Nov 2010 | B2 |
7841415 | Winter | Nov 2010 | B2 |
7854265 | Zimmermann | Dec 2010 | B2 |
7866390 | Latiolais, Jr. et al. | Jan 2011 | B2 |
7874352 | Odell, II et al. | Jan 2011 | B2 |
7874361 | Mosing et al. | Jan 2011 | B2 |
7878237 | Angman | Feb 2011 | B2 |
7878254 | Abdollahi et al. | Feb 2011 | B2 |
7882902 | Boutwell, Jr. | Feb 2011 | B2 |
7896084 | Haugen | Mar 2011 | B2 |
7918273 | Snider et al. | Apr 2011 | B2 |
7958787 | Hunter | Jun 2011 | B2 |
7971637 | Duhon et al. | Jul 2011 | B2 |
7975768 | Fraser et al. | Jul 2011 | B2 |
8118106 | Wiens et al. | Feb 2012 | B2 |
8141642 | Olstad et al. | Mar 2012 | B2 |
8210268 | Heidecke et al. | Jul 2012 | B2 |
8281856 | Jahn et al. | Oct 2012 | B2 |
8307903 | Redlinger et al. | Nov 2012 | B2 |
8365834 | Liess et al. | Feb 2013 | B2 |
8459361 | Leuchtenberg | Jun 2013 | B2 |
8505984 | Henderson et al. | Aug 2013 | B2 |
8567512 | Odell, II et al. | Oct 2013 | B2 |
8601910 | Begnaud | Dec 2013 | B2 |
8636067 | Robichaux et al. | Jan 2014 | B2 |
8651175 | Fallen | Feb 2014 | B2 |
8668003 | Osmundsen et al. | Mar 2014 | B2 |
8708055 | Liess et al. | Apr 2014 | B2 |
8727021 | Heidecke et al. | May 2014 | B2 |
8776898 | Liess et al. | Jul 2014 | B2 |
8783339 | Sinclair et al. | Jul 2014 | B2 |
8839884 | Kuttel et al. | Sep 2014 | B2 |
8893772 | Henderson et al. | Nov 2014 | B2 |
9068406 | Clasen et al. | Jun 2015 | B2 |
9206851 | Slaughter, Jr. et al. | Dec 2015 | B2 |
9631438 | McKay | Apr 2017 | B2 |
9797207 | McIntosh | Oct 2017 | B2 |
20020043403 | Juhasz et al. | Apr 2002 | A1 |
20020047067 | Michel | Apr 2002 | A1 |
20020074132 | Juhasz et al. | Jun 2002 | A1 |
20020084069 | Mosing et al. | Jul 2002 | A1 |
20020129934 | Mullins et al. | Sep 2002 | A1 |
20020170720 | Haugen | Nov 2002 | A1 |
20030098150 | Andreychuk | May 2003 | A1 |
20030107260 | Ording et al. | Jun 2003 | A1 |
20030221519 | Haugen | Dec 2003 | A1 |
20040003490 | Shahin et al. | Jan 2004 | A1 |
20040069497 | Jones et al. | Apr 2004 | A1 |
20040216924 | Pietras et al. | Nov 2004 | A1 |
20050000691 | Giroux et al. | Jan 2005 | A1 |
20050173154 | Lesko | Aug 2005 | A1 |
20050206163 | Guesnon et al. | Sep 2005 | A1 |
20050257933 | Pietras | Nov 2005 | A1 |
20050269072 | Folk et al. | Dec 2005 | A1 |
20050269104 | Folk et al. | Dec 2005 | A1 |
20050269105 | Pietras | Dec 2005 | A1 |
20050274508 | Folk et al. | Dec 2005 | A1 |
20060037784 | Walter et al. | Feb 2006 | A1 |
20060124353 | Juhasz et al. | Jun 2006 | A1 |
20060151181 | Shahin | Jul 2006 | A1 |
20060180315 | Shahin | Aug 2006 | A1 |
20070030167 | Li et al. | Feb 2007 | A1 |
20070044973 | Fraser et al. | Mar 2007 | A1 |
20070074588 | Harata et al. | Apr 2007 | A1 |
20070074874 | Richardson | Apr 2007 | A1 |
20070102992 | Jager | May 2007 | A1 |
20070131416 | Odell, II | Jun 2007 | A1 |
20070140801 | Kuttel et al. | Jun 2007 | A1 |
20070144730 | Shahin et al. | Jun 2007 | A1 |
20070158076 | Hollingsworth, Jr. et al. | Jul 2007 | A1 |
20070251701 | Jahn et al. | Nov 2007 | A1 |
20080059073 | Giroux et al. | Mar 2008 | A1 |
20080093127 | Angman | Apr 2008 | A1 |
20080099196 | Latiolais et al. | May 2008 | A1 |
20080125876 | Boutwell | May 2008 | A1 |
20080202812 | Childers et al. | Aug 2008 | A1 |
20080308281 | Boutwell, Jr. et al. | Dec 2008 | A1 |
20090151934 | Heidecke | Jun 2009 | A1 |
20090159294 | Abdollahi et al. | Jun 2009 | A1 |
20090200038 | Swietlik et al. | Aug 2009 | A1 |
20090205820 | Koederitz et al. | Aug 2009 | A1 |
20090205827 | Swietlik et al. | Aug 2009 | A1 |
20090205836 | Swietlik et al. | Aug 2009 | A1 |
20090205837 | Swietlik et al. | Aug 2009 | A1 |
20090229837 | Wiens et al. | Sep 2009 | A1 |
20090266532 | Revheim et al. | Oct 2009 | A1 |
20090272537 | Alikin et al. | Nov 2009 | A1 |
20090274544 | Liess | Nov 2009 | A1 |
20090274545 | Liess et al. | Nov 2009 | A1 |
20090321086 | Zimmermann | Dec 2009 | A1 |
20100032162 | Olstad et al. | Feb 2010 | A1 |
20100101805 | Angelle et al. | Apr 2010 | A1 |
20100200222 | Robichaux et al. | Aug 2010 | A1 |
20100206583 | Swietlik et al. | Aug 2010 | A1 |
20100206584 | Clubb et al. | Aug 2010 | A1 |
20110036586 | Hart et al. | Feb 2011 | A1 |
20110039086 | Graham et al. | Feb 2011 | A1 |
20110088495 | Buck et al. | Apr 2011 | A1 |
20110214919 | McClung, III | Sep 2011 | A1 |
20110280104 | McClung, III | Nov 2011 | A1 |
20120048574 | Wiens et al. | Mar 2012 | A1 |
20120152530 | Wiedecke et al. | Jun 2012 | A1 |
20120160517 | Bouligny et al. | Jun 2012 | A1 |
20120212326 | Christiansen et al. | Aug 2012 | A1 |
20120234107 | Pindiprolu et al. | Sep 2012 | A1 |
20120298376 | Twardowski | Nov 2012 | A1 |
20130055858 | Richardson | Mar 2013 | A1 |
20130056977 | Henderson | Mar 2013 | A1 |
20130062074 | Angelle et al. | Mar 2013 | A1 |
20130075077 | Henderson et al. | Mar 2013 | A1 |
20130075106 | Tran et al. | Mar 2013 | A1 |
20130105178 | Pietras | May 2013 | A1 |
20130207382 | Robichaux | Aug 2013 | A1 |
20130207388 | Jansson et al. | Aug 2013 | A1 |
20130233624 | In | Sep 2013 | A1 |
20130269926 | Liess et al. | Oct 2013 | A1 |
20130271576 | Elllis | Oct 2013 | A1 |
20130275100 | Ellis et al. | Oct 2013 | A1 |
20130299247 | Küttel et al. | Nov 2013 | A1 |
20140090856 | Pratt et al. | Apr 2014 | A1 |
20140116686 | Odell, II et al. | May 2014 | A1 |
20140131052 | Richardson | May 2014 | A1 |
20140202767 | Feasey | Jul 2014 | A1 |
20140233804 | Gustavsson et al. | Aug 2014 | A1 |
20140262521 | Bradley et al. | Sep 2014 | A1 |
20140305662 | Giroux et al. | Oct 2014 | A1 |
20140326468 | Heidecke et al. | Nov 2014 | A1 |
20140352944 | Devarajan et al. | Dec 2014 | A1 |
20140360780 | Moss et al. | Dec 2014 | A1 |
20150053424 | Wiens et al. | Feb 2015 | A1 |
20150083391 | Bangert et al. | Mar 2015 | A1 |
20150107385 | Mullins et al. | Apr 2015 | A1 |
20150337648 | Zippel et al. | Nov 2015 | A1 |
20160024862 | Wilson et al. | Jan 2016 | A1 |
20160138348 | Kunec | May 2016 | A1 |
20160145954 | Helms et al. | May 2016 | A1 |
20160177639 | McIntosh et al. | Jun 2016 | A1 |
20160215592 | Helms et al. | Jul 2016 | A1 |
20160230481 | Misson et al. | Aug 2016 | A1 |
20170044854 | Hebebrand et al. | Feb 2017 | A1 |
20170044875 | Hebebrand et al. | Feb 2017 | A1 |
20170051568 | Wern et al. | Feb 2017 | A1 |
20170067303 | Thiemann et al. | Mar 2017 | A1 |
20170067320 | Zouhair et al. | Mar 2017 | A1 |
20170074075 | Liess | Mar 2017 | A1 |
20170211343 | Thiemann | Jul 2017 | A1 |
20170284164 | Holmes et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2012201644 | Apr 2012 | AU |
2013205714 | May 2013 | AU |
2014215938 | Sep 2014 | AU |
2 707 050 | Jun 2009 | CA |
2 841 654 | Aug 2015 | CA |
2 944 327 | Oct 2015 | CA |
0 250 072 | Dec 1987 | EP |
1 619 349 | Jan 2006 | EP |
1 772 715 | Apr 2007 | EP |
1961912 | Aug 2008 | EP |
1961913 | Aug 2008 | EP |
2 322 357 | May 2011 | EP |
3032025 | Jun 2016 | EP |
1487948 | Oct 1977 | GB |
2 077 812 | Dec 1981 | GB |
2 180 027 | Mar 1987 | GB |
2 228 025 | Aug 1990 | GB |
2 314 391 | Dec 1997 | GB |
2004079153 | Sep 2004 | WO |
2004101417 | Nov 2004 | WO |
2007001887 | Jan 2007 | WO |
2007070805 | Jun 2007 | WO |
2007127737 | Nov 2007 | WO |
2009076648 | Jun 2009 | WO |
2012100019 | Jul 2012 | WO |
2012115717 | Aug 2012 | WO |
2014056092 | Apr 2014 | WO |
2015000023 | Jan 2015 | WO |
2015119509 | Aug 2015 | WO |
2015127433 | Aug 2015 | WO |
2015176121 | Nov 2015 | WO |
Entry |
---|
Balltec Lifting Solutions, LiftLOK™ Brochure, “Highest integrity lifting tools for the harshest environments,” 2 pages. |
Balltec Lifting Solutions, CoilLOK™ Brochure, “Highest integrity hand-held coiled tubing handling tools,” 2 pages. |
EPO Partial European Search Report dated Jul. 31, 2018, for European Application No. 18159597.6. |
EPO Extended European Search Report dated Nov. 6, 2018, for European Application No. 18159597.6. |
EPO Extended European Search Report dated Mar. 30, 2020, for European Patent Application No. 19219841.4. |
A123 System; 14Ah Prismatic Pouch Cell; Nanophosphate® Lithium-Ion; www.a123systems.com; date unknown; 1 page. |
Streicher Load/Torque Cell Systems; date unknown; 1 page. |
3PS, Inc.; Enhanced Torque and Tension Sub with Integrated Turns; date unknown; 2 total pages. |
Lefevre, et al.; Drilling Technology; Deeper, more deviated wells push development of smart drill stem rotary shouldered connections; dated 2008; 2 total pages. |
PCT Invitaiton to Pay Additional Fees for International Application No. PCT/US2008/086699; dated Sep. 9, 2009; 7 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2008/086699; dated Sep. 11, 2009; 19 total pages. |
National Oilwell Varco; Rotary Shoulder Handbook; dated 2010; 116 total pages. |
Weatherford; TorkSub™ Stand-Alone Torque Measuring System; dated 2011-2014; 4 total pages. |
Australian Examination Report for Application No. 2008334992; dated Apr. 5, 2011; 2 total pages. |
European Search Report for Application No. 08 860 261.0-2315; dated Apr. 12, 2011; 4 total pages. |
Eaton; Spool Valve Hydraulic Motors; dated Sep. 2011; 16 total pages. |
European Extended Search Report for Application No. 12153779.9-2315; dated Apr. 5, 2012; 4 total pages. |
Australian Examination Report for Application No. 2012201644; dated May 15, 2013; 3 total pages. |
Warrior; 250E Electric Top Drive (250-Ton); 250H Hydraulic Top Drive (250-Ton); dated Apr. 2014; 4 total pages. |
Hydraulic Pumps & Motors; Fundamentals of Hydraulic Motors; dated Jun. 26, 2014; 6 total pages. |
Warrior; Move Pipe Better; 500E Electric Top Drive (500 ton-1000 hp); dated May 2015; 4 total pages. |
Canadian Office Action for Application No. 2,837,581; dated Aug. 24, 2015; 3 total pages. |
European Extended Search Report for Application No. 15166062.8-1610; dated Nov. 23, 2015; 6 total pages. |
Australian Examination Report for Application No. 2014215938; dated Feb. 4, 2016; 3 total pages. |
Rexroth; Bosch Group; Motors and Gearboxes; Asynchronous high-speed motors 1 MB for high speeds; dated Apr. 13, 2016; 6 total pages. |
Canadian Office Action for Application No. 2,837,581; dated Apr. 25, 2016; 3 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/061960; dated Jul. 25, 2016; 16 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049462; dated Nov. 22, 2016; 14 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050542; dated Nov. 25, 2016; 13 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/046458; dated Dec. 14, 2016; 16 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/047813; dated Jan. 12, 2017; 15 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050139; dated Feb. 20, 2017; 20 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014646; dated Apr. 4, 2017; 14 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014224; dated Jun. 8, 2017; 15 total pages. |
European Extended Search Report for Application No. 17152458.0-1609; dated Jun. 8, 2017; 7 total pages. |
Australian Examination Report for Application No. 2017200371; dated Sep. 19, 2017; 5 total pages. |
European Extended Search Report for Application No. 17195552.9-1614; dated Dec. 4, 2017; 6 total pages. |
Australian Examination Report for Application No. 2017200371; dated Feb. 8, 2018; 6 total pages. |
Canadian Office Action for Application No. 2,955,754; dated Mar. 28, 2018; 3 total pages. |
Australian Examination Report for Application No. 2017200371; dated May 2, 2018; 4 total pages. |
Canadian Office Action for Application No. 2,974,298; dated May 16, 2018; 3 total pages. |
European Patent Office; Extended European Search Report for Application No. 18157915.2; dated Jun. 6, 2018; 8 total pages. |
Canadian Office Action in related application CA 2,955,754 dated Jul. 17, 2018. |
EPO Extended European Search Report dated Jul. 19, 2018, for European Application No. 18159595.0. |
EPO Extended European Search Report dated Jul. 17, 2018, for European Application No. 18158050.7. |
Cookson, Colter, “Inventions Speed Drilling, Cut Costs,” The American Oil & Gas Reporter, Sep. 2015, 2 pages. |
Ennaifer, Amine et al. , “Step Change in Well Testing Operations,” Oilfield Review, Autumn 2014: 26, No. 3, pp. 32-41. |
Number | Date | Country | |
---|---|---|---|
20180252050 A1 | Sep 2018 | US |