The present invention relates to a tool coupler and, more particularly, to a tool coupler for coupling with a bit while providing enhanced operational stability at reduced component costs.
A conventional tool coupler generally includes a coupling hole for coupling with different types of bits to provide enhanced utility. With continuous improvement, the tool coupler includes a mechanism allowing rapid detachment of the bit.
The pressing device 2′ includes a pressing seat 21′, a magnet 22′, and a spring 23′. The pressing seat 21′ is received in the coupling hole 1′, is located behind the first shoulder 14′, and is movable in an axial direction of the coupling hole 11′. The pressing seat 21′ includes a receptacle 211′ in a central portion thereof. The pressing seat 21′ further includes a recessed portion 212′ on a front end of an outer periphery thereof. A pressing side 213′ is provided on a rear end of the outer periphery of the pressing seat 21′ for pressing against the steel balls 131′. The pressing side 213′ is at a right angle (indicated by a in
With reference to
When it is desired to remove the bit 4′, the sleeve body 31′ is moved forwards to a position shown in
However, the above structure has the following advantages. Firstly, two springs 23′ and 34′, the front stop ring 16′, and the front and rear stop ring 34′ and 32′ are required, which is complicated in structure and inconvenient to assemblage while increasing the component costs and the probability of malfunction. Secondly, when the bit 4′ is inserted into the coupling hole 11′, if the steel balls 131′ cannot rapidly move towards the recessed portion 212′, smooth rearward movement of the sleeve body 31′ cannot be obtained. Thirdly, when the sleeve body 31′ is pushed forwards for removing the bit 4′, the right angle a between the pressing side 213′ and the recessed portion 212′ presses against the steel balls 131′ to move the steel balls 131′ radially outwards. However, the movement at the right angle a is generally not smooth.
An objective of the present invention is to provide a tool coupler providing enhanced operational stability while reducing the component costs.
A tool coupler according to the present invention includes a coupler having a front end and a rear end. The front end of the coupler includes a coupling hole. A coupling rod is provided on the rear end of the coupler. The coupler further includes first and second radial holes defined in an outer periphery of the coupler and intercommunicated with the coupling hole. First and second positioning balls are respectively received in the first and second radial holes. A front stop ring is mounted around the outer periphery of the coupler and is located between the first and second radial holes. A pressing device includes a pressing seat and a magnet. The pressing seat is mounted in a rear end of the coupling hole. The pressing seat includes a front end having a receptacle. The pressing seat further includes a rear end having an elastic portion abutting against a bottom wall of the coupling hole. The front end of the pressing seat includes a recessed portion at a side of the receptacle. The pressing seat further includes a pressing portion behind the recessed portion. The pressing portion is configured for pressing against the second positioning ball. The magnet is mounted in the receptacle of the pressing seat. A sleeve device includes a sleeve body, a rear stop ring, and a spring. The sleeve body includes a receiving hole in a central portion thereof. The receiving hole receives the front end of the coupler. The receiving hole of the sleeve body includes an inner periphery having a front portion with a second inclined guiding face. The second inclined guiding face is configured for pressing against the first positioning ball. The rear stop ring is fixed in a rear end of the receiving hole of the sleeve body. The rear stop ring includes a front end having a front stop wall. The rear stop ring further includes an inner periphery having a side stop wall and a recessed section. The side stop wall is configured for pressing against the second positioning ball.
The recessed section is configured for partially receiving the second positioning ball. The spring includes two ends respectively abutting against the front stop ring and the front stop wall of the rear stop ring. The spring provides elasticity for movement of the sleeve body.
The pressing seat can be made of plastic material, and the elastic portion can be helical.
The first and second positioning balls can be steel balls. The recessed portion of the pressing seat can include a notch intercommunicated with the receptacle. The magnet has a side exposed via the notch.
The pressing seat can further include a first inclined guiding face between recessed portion and the pressing portion. The first inclined guiding face inclines rearwards and radially outwards.
The recessed section of the rear stop ring can include a front end having a front inclined guiding side.
The coupling hole of the coupler can include an inner periphery having a shoulder located in front of the second radial hole. A portion of the coupling hole in front of the shoulder has a diameter larger than a diameter of another portion of the coupling hole behind the shoulder.
The outer periphery of the coupler can include a groove between the first and second positioning radial holes, and the front stop ring is received in the groove.
The receiving hole of the sleeve body can include a receiving portion behind the second inclined guiding face. The receiving portion has an enlarged diameter larger than a diameter of a front portion of the receiving hole. The spring is received in the receiving portion.
The present invention will become clearer in light of the following detailed description of illustrative embodiments of this invention described in connection with the drawings.
With reference to
A pressing device 2 includes a pressing seat 21 and a magnet 22. The pressing seat 21 is mounted in a rear end of the coupling hole 11 and is made of plastic material. The pressing seat 21 includes a front end having a receptacle 211. The pressing seat 21 further includes a rear end having an elastic portion 212 abutting against a bottom wall of the coupling hole 11. The elastic portion 212 is helical. The front end of the pressing seat 21 includes a recessed portion 213 at a side of the receptacle 211. The pressing seat 21 further includes a pressing portion 214 behind the recessed portion 213. The pressing portion 214 is configured for pressing against the second positioning ball 141. The recessed portion 213 of the pressing seat 21 includes a notch 215 intercommunicated with the receptacle 211. The pressing seat 21 further includes a first inclined guiding face 216 between recessed portion 213 and the pressing portion 214. The first inclined guiding face 216 inclines rearwards and radially outwards. The magnet 22 is mounted in the receptacle 211 of the pressing seat 21 and has a side exposed via the notch 215.
The sleeve device 3 includes a sleeve body 31, a rear stop ring 32, and a spring 33. The sleeve body 31 includes a receiving hole 311 in a central portion thereof. The receiving hole 311 receives the front end of the coupler 1. The receiving hole 311 of the sleeve body 31 includes an inner periphery having a front portion with a second inclined guiding face 312. The second inclined guiding face 312 is configured for pressing against the first positioning ball 131. The receiving hole 311 of the sleeve body 31 includes a receiving portion 313 behind the second inclined guiding face 312. The receiving portion 313 has an enlarged diameter larger than a diameter of a front portion of the receiving hole 311. The rear stop ring 32 is fixed in a rear end of the receiving hole 311 of the sleeve body 31. The rear stop ring 32 includes a front end having a front stop wall 321. The rear stop ring 32 further includes an inner periphery having a side stop wall 322 and a recessed section 323. The side stop wall 322 is configured for pressing against the second positioning ball 141. The recessed section 323 is configured for partially receiving the second positioning ball 141. The recessed section 323 of the rear stop ring 32 includes a front end having a front inclined guiding side 324. The spring 33 is received in the receiving portion 313. The spring 33 includes two ends respectively abutting against the front stop ring 17 and the front stop wall 321 of the rear stop ring 32 and provides elasticity for movement of the sleeve body 31.
With reference to
With reference to
With reference to
The tool coupler according to the present invention includes only one spring 33. Furthermore, the rear stop ring 32 both functions of positioning the second positioning ball 141 and pressing against the spring 33. The whole structure of the tool coupler is much simpler than the conventional structure, saving the costs, permitting easy assemblage, and reducing the probability of malfunction.
Furthermore, the first positioning ball 131 can be attracted by the magnet 22. Furthermore, the first inclined guiding face 216 of the pressing seat 21 and the front inclined guiding side 324 of the rear stop ring 32 greatly improves the operational smoothness and stability while preventing the sleeve body 31 from getting stuck during operation.
Although specific embodiments have been illustrated and described, numerous modifications and variations are still possible without departing from the scope of the invention. The scope of the invention is limited by the accompanying claims.