This application relates generally to an apparatus and method for tracking the usage and operating conditions of tooling parts in general and more particularly to industrial tooling.
One characteristic of modern efficient manufacturing is the contract manufacturing by vendors of many components and subassemblies of larger systems. For most large companies, such sub-contracting lowers costs and enables vendors with specialized equipment and expertise to make the components and subassemblies more efficiently and with less overhead. Engineering and design services by vendors are also often provided in conjunction with or as a substitutes for engineering design services by the manufacturer of the larger system.
In many instances, components designed for specific applications are unique and require unique tooling for their manufacture. Such unique tooling can comprise dies, stamps, molds, fixtures, jigs, patterns, specialized cutting and drilling tools, and any of a wide number of other devices and components that are dedicated for the use of a specific customer or component. For purposes of this specification and claims, “tooling” and “tools” shall mean any of the above and similar devices and components that are used primarily in the manufacture of other components, subassemblies, or devices rather than having an end-use in and of themselves. Such tools are often, though not always, attached to larger machines such as injection molding machines that are more durable and versatile. Such tools also are often, though not always, of predictable life before normal wear and tear require maintenance, repair, or replacement.
A general problem with tooling is tracking the location and usage of such tooling in order that proper schedules for inspection, maintenance, repair or replacement can be maintained. For purposes herein, inspection, maintenance, repair and/or replacement and similar operations shall be summarized as “maintenance”. In addition to scheduled maintenance, some tools wear differently depending upon their specific use or the specific operating conditions to which they are subjected. For instance, wear upon molds and dies used in injection molding may vary greatly depending upon temperature, injection material used, pressure, and similar operating conditions.
Even when tooling is owned and maintained in one location, it is often difficult to track and monitor usage of a particular item of tooling. For instance, a manufacturing operation may have many identical tools, and the actual usage and operating conditions experienced by one particular tool may be difficult to track among the many similar or identical tools. These and similar tracking problems become greatly exacerbated for a tool owner when the tool is used and operated by a party other than the tool owner. Use by third parties is particularly common in contract manufacturing, where a customer of a manufacturing shop often owns tools that are unique to itself. Whether such tools are designed by the customer or by the manufacturing shop, customers generally prefer to own their tooling for cost, tax, and control reasons. Ownership lowers cost since the manufacturing shop need not carry the tool on its books and charge overhead. Ownership lowers taxes by enabling the owner to take depreciation. Ownership is believed to improve control since if a customer owns an asset, the customer reasonably believes that it can direct the vendor to only use the tool for the customer.
As described above, scheduling maintenance of tooling is sometimes a difficult task even when the subject tooling remains in the possession of an owner operator. Where the tooling is in the control of a third party such as a contract manufacturer, the parties may agree by contract or otherwise how the tooling will be used and maintained, yet tracking whether such agreements are in fact followed is often difficult or impossible. Many industrial customers have experienced much higher tool replacement expense than expected, and the industrial customer is forced to accept such replacement costs without knowing whether the tooling was maintained properly or even whether it was used in an unauthorized fashion for a customer other than the tool owner. Understanding the causes of tooling failure or excessive wear are often difficult to determine after-the-fact since tool failure and wear can have many causes in addition to poor maintenance or excessive usage. Such additional reasons for tool failure or wear include, without limitation, poor tool design and materials, unexpected operating conditions, etc. Since much industrial tooling is very expensive, unexpected replacement costs can add greatly to a customers cost base over expected amounts.
For the above reasons, it would be desirable to have an apparatus and method for tracking tooling location, usage, operating conditions, and other parameters affecting the life and maintenance of tooling.
One embodiment of the invention is an item of tooling, comprising: an item of tooling installed in its operating environment; and a memory device, fixedly coupled with the tooling, for storing data concerning the tooling.
For a general understanding of the present invention, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate identical elements.
An exemplary tool with which the advantages of the present invention will be described is an injection mold. For purposes of describing typical injection mold apparatus and procedures, U.S. Pat. No. 5,118,455, issued to Loren, is hereby incorporated in its entirety herein.
As stated above, EEPROM 60 can be any form of memory and is most typically non-volatile memory.
Embodiments of the invention that contain direct links between EEPROM 60 and an external CPU can provide features, uses, and capabilities analogous to all of the features, uses, and capabilities described in the above incorporated references. EEPROM 60 may encode, for instance, the serial number, owner, and other identity indicia of the tool. When installed, logic device 216 can inquire to ensure that the correct tooling is installed for the correct part for the correct customer. A lock-out feature can be programmed such that no operations can occur if the installed tooling doesn't match the correct identity information. The EEPROM can also be encoded with information to aid in its maintenance and refurbishment. For instance, the original tool maker can be encoded as well as the date and servicer's identity for each time (or at least the last time) the tooling has been maintained or repaired. Operating parameters such as optimal dwell time, cycle time, temperature, pressure, etc. can be encoded for reference by operators or for automated programming by logic device 216. In one embodiment ,logic device 216 is a controller of the machine processes and utilizes operating parameter information stored in the memory device for controlling the operation being performed with the tool. In addition, logic device 216 can encode useful operating environment information onto EEPROM 60 such as actual dwell time, cycle time, temperature, pressure, cycle count, measured wear, etc. By encoding such actual data, including maintenance information matched to cycle count or other indicia of wear, tooling owners can better determine whether their tooling has been properly used or, instead, has been abused. Simply by matching encoded cycle count against actual parts delivered by a vendor, a tooling owner can obtain information concerning a vendor's efficiency, error rates, or even whether the tooling has been put to unauthorized use. Additionally, if tooling performance is known to change over the life of the tooling because of wear, changes in temperature rise rates, etc, then logic device 216 can use operating life data stored on EEPROM 60 to alter operating parameters of injection machine 12 or whatever other type of system is being used with the subject tooling. Much additional static or operational information can be stored on EEPROM 60, and the operators and logic devices can use such information for many purposes in addition to those listed above.
Yet additional benefits can be achieved if logic device 216 is connected with communication means that permit communication outside injection molding machine 12 and its components. Such a communication means is indicated by lead 218 showing data flow to and from logic device 216. For instance, a web-based communication system can help an owner track the worldwide location and use of all of its enabled tooling. Such tracking would enable better inventory control, replacement scheduling, capacity prediction and control, and permit a tool owner to participate directly in programs for maintenance, repair, and replacement. Even communication within a manufacturing facility to central data bases would enable a shop to better track usage and inventory of tooling in its possession.
Where EEPROM 60 is a wireless chip as shown in
Of course, wireless memory devices are not necessary to obtain many of the advantages described above. As described above in relation to
An exemplary use of embodiments of the invention is in relation to the manufacture of print cartridges for electrostatographic printers. Such print cartridges often sell for attractive margins over manufacturing cost. Tooling used in the manufacture of print cartridges includes, without limitation, injection molds for plastic parts, fixtures for holding and positioning parts during assembly, cutting tools and fixtures for cutting drums, rolls, etc, and a host of other tools. Because print cartridges are often mass produced, many copies of tooling are often made and tracking the various tooling is often difficult. Such problems are compounded when specialized components are made or assembled by third party vendors using specially designed tooling owned by the system designer of the printer. Such tooling in the aggregate typically constitute huge investments. Proper use and maintenance is accordingly important. Additionally, because margins on the print cartridge are often very attractive, system designers would benefit from an ability to ensure that unscrupulous vendors do not use tooling for unauthorized purposes. For all of the above reasons, system designers of print cartridges and many other system owners would greatly benefit from embodiments of the invention that better permit a tool owner to track and control location, usage, operating conditions, maintenance, repair, and replacement of tooling. It is believed that memory devices coupled with tooling as described herein offer an improved solution that can achieve the enumerated benefits.
While particular embodiments have been described, alternatives, modifications, variations, and substantial equivalents that are or may be presently unforeseen may arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they may be amended are intended to embrace all such alternatives, modifications, variations, improvements, and substantial equivalents.