The described invention relates in general to connector systems for use with electronic equipment, and more specifically to connector systems that utilize pin and socket type contacts (i.e., terminals) such as those typically found in MATE-N-LOK systems or comparable systems, wherein the pin and socket contacts are modified to be more easily extractable from connector housings using an extraction tool.
“Molex connector” is a common term used for a two-piece “pin and socket” type interconnection that is frequently used for disk drive connectors and other devices. Pioneered by Molex Products Company, the two-piece design became an early standard in the electronics industry. First used in home appliances, other industries soon began to incorporate these connectors into products ranging from automobiles to vending machines to mini-computers. These connectors include cylindrical spring-metal pins that fit into cylindrical spring-metal sockets. The pins and sockets are usually configured in a rectangular matrix, which is held in a nylon shell or other type of shell, and an individual connector typically includes 2, 3, 4, 5, 6, 9, 12, or 15 pin and socket pairs, each representing a different electronic circuit. Pins and sockets can be arranged in various possible combinations within a single connector and the housing is typically separated into male and female portions. AMP (now a division of Tyco Electronics) developed the MATE-N-LOK 0.084 pin connector, which was initially used on disk drives. This interconnection configuration is now the established standard for disk drive power connectors.
Despite its widespread adoption, the MATE-N-LOK connector system has certain shortcomings. For example, when in use, the pin and socket contacts may experience inconsistent retention within the housing portions of the connector system. Inconsistent retention within the housing may lead to partial or total failure of the connector and consequently to diminished performance or even failure of the device into which the connector is incorporated. Thus, there is an ongoing need for pins and sockets that provide more consistent and reliable retention within the housing of the connector. If one or more of the contacts has been mis-wired, the contact is usually removed from the housing portion for re-wiring. A specially designed tool may be used to extract pins and/or sockets from the housing portion. Therefore, there is an ongoing need for pins or sockets that provide consistent and reliable retention within the housing of the connector and that are easily extractable from the housing, when necessary.
The following provides a summary of exemplary embodiments of the present invention. This summary is not an extensive overview and is not intended to identify key or critical aspects or elements of the present invention or to delineate its scope.
In accordance with one aspect of the present invention, a connector system for use with electronics is provided. This system includes a connector assembly, wherein the connector assembly further includes at least one housing component and wherein the housing component further includes at least one contact cavity; and at least one electrical contact, which may be a pin contact or a socket contact, and which further includes a wire retaining portion and a mating portion formed integrally with an elongated body portion. The body portion of the contact further includes at least one and typically two outwardly biased latches and each of these latches is adapted to effectively engage both the interior of the contact cavity and an extraction tool, if necessary. Each of the latches is typically formed from the same material as the body portion of the contact and is integral therewith and further includes an internal biasing member and an angled external engagement member formed at the end of the biasing member for frictionally engaging both the contact cavity and the extraction tool. In this embodiment, a tool for extracting the contact or contacts is included in the claimed system.
In accordance with another aspect of the present invention, an electrical contact for use with electronics is provided. This connector contact, which may be a pin contact or a socket contact, includes a wire retaining portion and a mating portion formed integrally with a body portion. The body portion of the contact further includes at least one and typically two outwardly biased latches and each of these latches is adapted to effectively engage both the interior of a connector housing, i.e., a contact cavity, and an extraction tool, if necessary. Each of the latches is formed from the same material as the body portion of the contact and is integral therewith and further includes an internal biasing member and an external engagement member formed at the end of the biasing member for frictionally engaging both the housing and the extraction tool. The internal biasing member includes a downwardly angled portion and an upwardly angled portion and the external engagement member includes a first angled portion and a second angled portion.
In yet another aspect of this invention, a method for extracting an electrical contact from the housing portion of a connector assembly is provided. This method includes the steps of: inserting at least one specially modified contact, which may be either a pin contact or socket contact, into a housing component; and extracting the contact from the housing component with an extraction tool specifically designed to work with the contact. The contact typically includes a wire retaining portion and a mating portion formed integrally with a body portion. The body portion of the pin connector further includes at least one and typically two outwardly biased latches and each of these latches is adapted to effectively engage the extraction tool when the extraction tool is inserted into the housing. Each of the latches is typically formed from the same material as the body portion of the connector pin and is integral therewith and further includes an internal biasing member and an external engagement member formed at the end of the biasing member for frictionally engaging the extraction tool. The extraction tool simultaneously engages each of the latches and the application of sufficient force to the tool will extract the pin.
Additional features and aspects of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description of the exemplary embodiments. As will be appreciated by the skilled artisan, further embodiments of the invention are possible without departing from the scope and spirit of the invention. Accordingly, the drawings and associated descriptions are to be regarded as illustrative and not restrictive in nature.
The accompanying drawings, which are incorporated into and form a part of the specification, schematically illustrate one or more exemplary embodiments of the invention and, together with the general description given above and detailed description given below, serve to explain the principles of the invention, and wherein:
Exemplary embodiments of the present invention are now described with reference to the Figures. Reference numerals are used throughout the detailed description to refer to the various elements and structures. In other instances, well-known structures and devices are shown in block diagram form for purposes of simplifying the description. Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
The present invention relates to a connector system that includes connector housing components and pin and socket contacts that are mounted within the housing components. A first general embodiment of this invention provides a connector system that includes both pin contacts and socket contacts that each include at least one engaging/retaining latch; a second general embodiment of this invention provides an individual electrical contact that includes at least one engaging/retaining latch; and a third general embodiment of this invention provides a method for effectively extracting an electrical contact from a housing portion of a connector assembly. With reference now to the Figures, one or more specific embodiments of this invention shall be described in greater detail.
With reference now to the Figures,
As best shown in
As shown in
As previously indicated, pin contact 110 and socket contact 210 are intended for use with connector systems included in electronic devices. Such connector systems typically include a connector assembly that further includes multiple housing components. In some connector systems these housing components are referred to as a plug housing 300 and a cap housing 302 (see
Also, as previously described, the latches (150 and 160 or 250 and 260) facilitate removal of pin contact 110 or socket contact 210 from a contact cavity in the event that a pin has been mis-wired and/or inserted into the wrong contact cavity. An extraction tool 306 (see
While the present invention has been illustrated by the description of exemplary embodiments thereof, and while the embodiments have been described in certain detail, it is not the intention of the Applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to any of the specific details, representative devices and methods, and/or illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 11/532,075 filed on Sep. 14, 2006 and entitled “ELECTRICAL CONTACT WITH WIRE TRAP”, the disclosure of which is incorporated by reference as if fully rewritten herein.
Number | Name | Date | Kind |
---|---|---|---|
2762026 | Knohl | Sep 1956 | A |
3566342 | Schmitt et al. | Feb 1971 | A |
4030803 | Langenbach | Jun 1977 | A |
5207603 | Peloza | May 1993 | A |
Number | Date | Country |
---|---|---|
0 676 827 | Oct 1995 | EP |
0 760 540 | Mar 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20080070446 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11532075 | Sep 2006 | US |
Child | 11839685 | US |