This invention relates to the area of fire arms, and more specifically, disabling small arms in the field. The device described herein renders a small arm such as a rifle, pistol, or other weapon, incapable of chambering or firing a round of ammunition.
In times of war, during port or shipboard inspections, and police actions, the military, Homeland Security, or Customs Security Officers are often confronted with the need to carry off, guard, disable, or destroy illegally imported or captured weapons, particularly small arms. The need may arise when weapons are seized individually, or when the weapons are located in stockpiles, caches or shipping containers. While guarding the captured weapons is an option, guarding is manpower intensive and occupies the time of a well trained soldier, Customs, or Homeland Security Officer who's skills and training may be better used elsewhere. Often, the weapons must eventually be disposed of in some manner, often at yet another location, requiring further manpower to guard, transport, and destroy the weapon.
While small arms can be rendered inoperable by application of force, such as crushing, or by the application of sufficient heat to melt or bend the working components of the weapon, equipment, facilities, skills, and manpower are often unavailable to use these methods in battlefield conditions, aboard ships, or at Ports of Entry. Thus, the need exists to easily disable small arms with the limited manpower, limited skills, and limited equipment typically available under conditions found in the field, or at Ports of Entry.
The invention disclosed herein is a field tool to render inoperable or deactivate small arms. In the most preferred embodiment, the invention is a single use injection device similar to a syringe that allows a user to place a bonding material such as an adhesive or epoxy into the barrel, breach, receiver, or other working parts of the weapon. Once in place, the bonding material can interfere with the operation of the firing pin, extractor, bolt, magazine, and other moving components of the weapon, as well as physically occupying or plugging the breach or barrel of the weapon so that a round cannot be chambered. Further, the field tool can be left in the barrel of the weapon after use and thus bonded in place, providing a ready indicator that the weapon has been rendered inoperable.
The field tool or applicator is readily transportable and simple to operate, thus allowing the device to be carried into the field and used by personnel with minimal training. The use of the device involves clearing the weapon of ammunition, placing an empty magazine into the receiver, moving the bolt to close the breach of the weapon, inserting the applicator into the muzzle of the weapon until the bolt face is in contact with the applicator, and pushing the plunger to dispense the bonding material into the workings of the weapon. Should the bolt be missing from the weapon, or not in the closed position, the device can still be used, however the performance may be diminished.
Similarly, the device will also work without the magazine being in place. If the magazine is not in place, the bonding material can still seep into the receiver, thereby obstructing insertion of a magazine. Even if a magazine can be inserted, the bonding material may also foul or bind the magazine locking mechanism so that the magazine cannot remain in the receiver. This obstructing and binding can occur in addition to the obstruction of the breach and fouling and bonding of other parts the weapon.
As shown in the Figures, the field tool 10 of the preferred embodiment is a generally cylindrical casing 20 preferably having a wall thickness of approximately two hundredths of an inch thick. The casing 20 is approximately three inches long. The casing 20 includes a port or nozzle 21 at a first end 23, and an opening to accept a plunger 25 at a second end 24, the plunger 25 extending coaxially and slidably within the casing 20. When the plunger 25 slides toward the nozzle 21, material 50 is dispensed out of the nozzle 21. The nozzle 21 is approximately 0.0625 inches in diameter. The casing 20 is approximately 0.2 inches in diameter, to allow the casing to fit into the barrel of weapons as small as .22 caliber.
One skilled in the art will recognize that larger diameter casings can be used for larger caliber weapons. For instance, the casing is preferably 0.3 inches in diameter when designed for use with .40-.50 caliber weapons. The larger diameter casing 20 allows more material to be injected into the larger caliber weapons, and reduces the clearance between the wall of the casing 20, and the wall of the barrel 61. Additionally, one will recognize that the dimensions set forth herein are only preferences and may be varied.
The first end 23 of the casing 20 also includes stand-offs 40a-c, which extend beyond the opening of the nozzle 21 by approximately 0.04 inches. The stand-offs 40a-c may extend beyond the nozzle 21 by other amounts. Although the preferred embodiment shows three stand-offs, one skilled in the art will recognize that the number of stand-offs can vary, so long as the structure displaces the nozzle 21 from the bolt face 70. The stand-offs 40a-c are placed against the bolt face 70 when the field tool 10 is inserted into the barrel 61 of a small arm 60, as shown in
The plunger 25 includes a plunger first end 26 and a plunger second end 27. Between the plunger first end 26 and the plunger second end 27 is a circumferential groove 30 which engages a circumferential bulge 35 that extends inwardly from the wall of the casing 20 into the interior of the casing 20. One skilled in the art will recognize that the groove 30 and protrusion 35 need not extend about the entire circumference of the casing 20 or plunger 25. When so engaged, the plunger 25 is fixed in position relative to the casing 20 and movement of the plunger 25 within the casing 20 is restrained, unless sufficient force is applied to overcome the engagement. Plunger 25 also includes an area of reduced diameter 37, which allows the plunger 25 to pass by the circumferential protrusion 35 when the field tool 10 is activated by applying force to move the plunger 25 toward the nozzle 21.
The material 50 dispensed through nozzle 21 when plunger 25 is pushed forward can be a two part epoxy that will mix as the plunger 25 is moved towards the nozzle 21. Such two part epoxies typically have a resin and activator or hardener that activate when mixed together. Such two part epoxies are manufactured by J-B Weld Company of Sulpher Springs Tex. The epoxies are available in a number of formulations having different working times, and bonding properties. Those having superior bonding to metal surfaces are preferred. Resistance to solvents is also preferred to hamper cleaning or repair of the deactivated weapon. It is preferred that the epoxy have a working time of 30 minutes or less. In alternate embodiments, the material 50 may be a single part bonding material such as a polyurethane adhesive, which will not need mixing.
One part of the epoxy, typically the hardener, can be encased in glass or plastic beads, the beads being suspended in the second part, or resin. Alternatively, each part of a two part epoxy can be encased or suspended in plastic or glass structures such as packets, tubes, beads, or other suitable structures that will keep the parts separated prior to use. Such structures however, must rupture or otherwise allow the two parts of the binary material to mix when the plunger 25 moves towards the nozzle 21. One skilled in the art will recognize arrangements other than glass or plastic beads can be used to store and activate binary materials in the present invention.
In operation, as shown in
As shown in
As the material 50 exists nozzle 21, it backfills into the barrel 61, and penetrates around the bolt 69 and into the receiver area of the weapon 60, wherein the material 50 contacts other workings of the weapon 60, and will lock the bolt 69 in place, preventing removal of the bolt 69 or movement of the bolt 69 or chambering of a round of ammunition. The material 50 may also inhibit the operation of the firing pin 75 within bolt 69 and may also interfere with extractors and other components of the bolt 69.
If a magazine 66 is in the weapon or small arm 60, the material can enter the magazine 66, or the magazine locking mechanism, preventing removal of the magazine 66 from the small arm 60. While it is preferred an magazine 66 is in the weapon prior to the use of the field tool 10, if a magazine 66 is not present, the material 50 can still interfere with the magazine locking mechanism such that a magazine 66 cannot be inserted into or retained in the small arm 60.
As shown in
The method and structure described herein are merely examples of how the invention can be constructed and used. Such examples are not meant to limit the scope of the invention.
Number | Date | Country | |
---|---|---|---|
60927074 | May 2007 | US |