Tool for drilling/routing of printed circuit board materials

Information

  • Patent Grant
  • 6830604
  • Patent Number
    6,830,604
  • Date Filed
    Wednesday, October 23, 2002
    22 years ago
  • Date Issued
    Tuesday, December 14, 2004
    20 years ago
Abstract
A dense cemented carbide product is described. The product is manufactured from WC with a grain size between 0.1 and 0.4 μm, fine grain size cobalt and ruthenium powders. The product is used in PCB machining operations where the addition of 10-25% Ru to the binder phase offers up to 25% wear resistant increases and up to 100% increase in chipping resistance in PCB routing compared to conventional materials (6% cobalt and 0.4 μm grain size).
Description




The present invention relates to a tool for drilling/routing of printed circuit board materials. By alloying the binder phase with Ru in combination with the use of fine grained Co-powder the properties have been improved.




Cemented carbide containing Ru as binder phase alone or in combination with the conventional Co and/or Ni is known in the art. For example, AT 268706 discloses a hard metal with Ru, Rh, Pd, Os, Ir, Pt and Re alone or in combination as binder phase. U.S. Pat. No. 4,574,011 discloses a hard metal composition for ornamental purposes with a binder phase of Co, Ni and Ru. GB 1309634 discloses a cutting tool with a Ru binder phase. GB 622041 discloses a hard metal composition a Co+Ru binder phase.




The routing of Printed Circuit Board materials requires a wide range of properties from the tool material in order for it to perform successfully. These include a hardness in excess of 2000 HV, a resistance to edge chipping that is best defined by a fracture toughness in excess of 8 MPam


1/2


, a resistance to chemical attack from the resins included in printed circuit boards and a sharp as possible a cutting edge. Some of these requirements conflict, for instance the high hardness tends to mean a reduced edge toughness. The new products for this application can, therefore, require a reduced WC grain size to produce a higher hardness with reduced toughness. However, if this is combined with an increase in cobalt content an increased toughness can be achieved for the same hardness. This also results in a sharper cutting edge, which is required.




The invention is primarily concerned with the addition of ruthenium to submicron grades of cemented carbide. The levels of addition vary between 5 and 35, preferably between 15 and 30, wt-% of the binder content with the best results obtained at about 25 wt-%. For best effects the cobalt used should be of the fine grain size cobalt powder having deagglomerated spherical grains of about 0.4 μm average grain size and with a narrow grain size distribution. Preferably the cobalt powder is polyol cobalt. The cobalt contents to which this addition can be made should vary from 5-12%, preferably 5-8. The average WC grain size shall be <0.8 μm, preferably <0.4 μm. The cemented carbide of the invention is preferably a straight WC+Co grade but it may also contain <5 wt-% gammaphase.




In order to obtain the submicron WC grain size VC+Cr


3


C


2


is added. Because the Ru also acts as a mild grain growth inhibitor an addition of <0.9 wt % VC+Cr


3


C


2


is generally satisfactory. Particularly good results are obtained if the VC/Cr


3


C


2


ratio in wt % is 0.2-0.9, preferably 0.4-0.8, most preferably 0.6-0.7. Preferably sintering is performed using gas pressure sintering also referred to as sinter-HIP.




The invention also relates to the use of a cemented carbide with submicron WC grain size and with a binder phase containing 10-30 wt-% Ru as a tool for drilling/routing of printing circuit board materials.




The present invention further relates to a method of making a cemented carbide body comprising one or more hard constituents and a binder phase based on cobalt, nickel and/or iron by powder metallurgical methods milling pressing and sintering of powders forming hard constituents and binder phase whereby said binder phase contains 10-30 wt-% Ru. At least part of the binderphase powder consists of non agglomerated particles of spheroidal morphology of about 0.4 μm average grain size and with a narrow grain size distribution wherein at least 80% of the particles have sizes in the interval x±0.2x provided that the interval of variation (that is 0.4x) is not smaller than 0.1 μm.




The advantages offered by the ruthenium additions are as mentioned a further element of grain growth refinement, an increase in resistance to chemical attack and a strengthening of the binder phase without significantly affecting the edge toughness due to the increase in cobalt content used.











EXAMPLE 1




Cemented carbide PCB-router according to the invention were made with the composition 1.9% Ru, 5.6% Cobalt the remainder, WC (0.2 μm grain size), with about 0.7% (VC+Cr


3


C


2


) grain growth inhibitor. The material had a hardness of 2080 HV and a K1C of 8.75 MPam


1/2


.




For comparison the following PCB routers according to prior art were also made. One was 6% cobalt grade with 0.4 μm WC with a hardness of 2000-2100 HV and one with the same hardness but with 5% cobalt and 0.5 μm WC grain size.




The routers were ground to 2.4 mm dia and tested as follows:




Workmaterial: Copper clad 3 mm thick FR4 PCB, stacked three deep




Test 1: 30,000 RPM, 1.2 m/min feedrate, 150 m of cut




Test 2: 42,000 RPM, 2.2 m/min feedrate, 100 m of cut




In test 1 routers according to the invention reached 150 m of cut with 25% less average wear than the prior art routers which used 6% cobalt.




In test 2 routers according to the invention reached 100 meters of cut with acceptable levels of wear.




Routers according to prior art with 5% and 6% cobalt both fractured between 50 and 75 meters.




EXAMPLE 2




2.4 mm dia routers according to the invention were made from cemented carbides with varying ruthenium contents as follows:




Composition 1: 1.0% Ru, 6.3% Co, 0.7 VC+Cr


3


C


2


, 0.2 μm WC




Composition 2: 1.4% Ru, 6.0% Co, 0.7 VC+Cr


3


C


2


, 0.2 μm WC




Composition 3: 1.9% Ru, 5.6% Co, 0.7 VC+Cr


3


C


2


, 0.2 μm WC




The routers were tested as follows:




Workmaterial: Copper clad 3 mm thick FR4 PCB, stacked three deep




Conditions: 30,000 RPM, 1.2 m/min feed rate.




Machining until fracture.




Results:




1.0% Ru variant—205 m (Average of 4 cutters)




1.4% Ru variant—333 m (Average of 5 cutters)




1.9% Ru variant—366 m (Average of 7 cutters)




EXAWMPLE 3




Cemented carbide PCB microdrills according to the invention were made with the composition 2.2% Ru, 6.4% Co the remainder WC (0.4 μm grain size), with about 0.8 % (VC+Cr


3


C


2


) grain growth inhibitor. The material had a hardness of 2001 HV and a K1C of 8% MPam


1/2


.




For comparison the following PCB microdrills according to prior art were made using 8% cobalt grade with 0.4 μm WC with a hardness of 1900 HV.




The microdrills were tested and the wear measured. It was found that the prior art materials exhibited 10-15% less wear resistance and 10-15% less resistance to breakage during an increasing feed rate that started at 15 μm/rev and increasing towards 70.



Claims
  • 1. Cemented carbide comprising 5-12% Co binder phase, VC in an amount greater than zero, Cr3C2 in an amount greater than zero, such that VC+Cr3C2 is in an amount greater than zero and less than 0.9 wt. %, and remainder submicron WC wherein said binder phase further contains 10-30 wt-% Ru.
  • 2. Cemented carbide according to claim 1, wherein the binder phase content is 5-8 wt-%.
  • 3. Cemented carbide according to claim 1, wherein said binder phase further contains about 25 wt-% Ru.
  • 4. A machining tool comprising cemented carbide with submicron WC grain size and with 5-12% Co binder phase containing 10-30 wt-% Ru, and VC in an amount greater than zero, Cr3C2 in an amount greater than zero, such that VC+Cr3C2 is in an amount greater than zero and less than 0.9 wt. %.
  • 5. Cemented carbide according to claim 1, wherein the ratio of wt. % defined VC/Cr3C2 is 0.2-0.9.
Priority Claims (1)
Number Date Country Kind
9703204 Sep 1997 SE
Parent Case Info

This Application is a Divisional Application of Ser. No. 09/486,586 filed 15 May 2000, now U.S. Pat. No. 6,521,172 which is a 371 of PCT/SE98/01574 filed 4 Sep. 1998.

US Referenced Citations (14)
Number Name Date Kind
3994716 Huppmann et al. Nov 1976 A
4093450 Doyle et al. Jun 1978 A
4469505 Cheresnowsky et al. Sep 1984 A
4539041 Figlarz et al. Sep 1985 A
4574011 Bonjour et al. Mar 1986 A
5476531 Timm et al. Dec 1995 A
5482530 Höhne Jan 1996 A
5603075 Stoll et al. Feb 1997 A
5658678 Stoll et al. Aug 1997 A
5802955 Stoll et al. Sep 1998 A
6015447 Görge et al. Jan 2000 A
6086980 Foster et al. Jul 2000 A
6413293 Grearson et al. Jul 2002 B1
6521172 Grearson et al. Feb 2003 B2
Foreign Referenced Citations (7)
Number Date Country
268706 Feb 1969 AT
2 225 896 Dec 1972 DE
27 19 532 Nov 1977 DE
622041 Apr 1949 GB
1309634 Mar 1973 GB
9213112 Aug 1992 WO
9218656 Oct 1992 WO
Non-Patent Literature Citations (2)
Entry
V. A. Tracey et al., “Development of Tungsten Carbide-Cobalt-Ruthenium Cutting Tools for Machining Steels”, vol. 82, No. 1, 1998, XP000574252, pp. 281-292.
B. Zetterlund, “Cemented Carbide in High Pressure Equipment”, High Pressure Engineering, vol. 2, 1997, pp. 35-40.