This United States application is the National Phase of PCT Application No. PCT/NO2015/050035 filed 18 Feb. 2015 which claims priority to Norwegian Patent Application No. 20140313 filed 11 Mar. 2014, each being incorporated herein by reference.
The invention relates to a downhole tool for use in a casing or tubing in a well comprising a support and a brush. The invention further relates to a downhole tool assembly, a wireline tractor, and a drill string comprising such downhole tool. The invention also relates to a method of cleaning or honing a casing or tubing.
In the petroleum industry, various kinds of downhole tools are used for operations in a well. One of the operations to be carried out downhole is to clean seal bores (tubing or casing) and nipple profiles with a so-called downhole brush or scraping tool. Such tools may be coupled to a downhole tractor, or they may be operated via a wireline while residing in the well. Alternatively, they may be coupled to a drill string. In the prior art several kind of brush tools have been reported.
US2012/0198637A1 discloses a downhole brush tool including a tool body having a brush-supporting portion on the tool body between upper and lower stops. A split sleeve has a plurality of throughports therein, and a plurality of brush elements including a base member and a plurality of bristles extending from the base member. The base member is positioned within a cavity in the brush-supporting portion of the tool body, and a stop surface supported on the split sleeve engages a base member to prevent the brush element from passing radially outward. The disadvantage of this downhole brush tool is that it has a limited tolerance to diameter variations of the tubing or casing, because it relies on flexibility of the bristles.
U.S. Pat. No. 8,376,043B2 discloses an improved and enhanced spring loaded downhole tool for cleaning well casing bores. The tool comprises a mandrel, at least a first insert having a passageway therethrough, and at least a second insert, wherein both the first insert and the second insert are selected from at least one of a spring loaded scraper insert and a least one wire-brush insert. Further, the first insert and the second insert are slidingly received within a slot on a first mounting portion on the mandrel and a slot on a second mounting portion on the mandrel, from the outermost respective ends. The first insert is secured by a first retaining sleeve and the second insert is secured by a second retaining sleeve. Also disclosed is a unique method for cleaning a section of a casing with a downhole tool. The disadvantage of this downhole brush tool is that it has a limited tolerance to diameter variations of the tubing or casing, because it relies on design of the tool. The spring loading feature is only used to compensate for wear of the brushes.
WO2009/108068A1 discloses a well tool for cleaning the inside of casings and valves, particularly for removing mineral deposits. The tool comprises a main body comprising a drive-member, a power supply, a hydraulic pump and a gripping mechanism. The well tool is distinguished in that the tool further comprises a brush-head comprising radially expanding brush-members, wherein the tool by means of the drive-member is adapted to clamp the main body to the inside of a casing by means of the gripping mechanism, rotate the brush-head and expand the brush-members to a desired outer diameter. Contrary to the earlier discussed prior art solutions this document discloses a tool that offers tolerance to diameter variations of the tubing or casing. Nevertheless, this tolerance is limited.
The invention has for its object to remedy or to reduce at least one of the drawbacks of the prior art, or at least provide a useful alternative to prior art.
The object is achieved through features, which are specified in the description below and in the claims that follow.
In a first aspect the invention relates more particularly to a downhole tool for use in a casing or tubing in a well comprising a support and a brush, wherein the downhole tool further comprises:
The effect of the downhole tool of the invention is that the reach of the brush is no longer determined by the dimensions of the brush itself, but rather by the dimensions of the pivotably lever arm. When the arm carrying the brush is now rotated around the tubing or casing a very large tolerance of diameter of the tubing or casing can be obtained by simply choosing a certain length of the lever arm. Expressed differently, one size of the downhole tool may fit all sizes of the casing or tubing. It must be stressed at this point that the invention is not limited to downhole tools for cleaning. The invention is also applicable in downhole tools for honing of the tubing or casing. The main difference between said tools mainly resides in the choice for the type of brush in terms of coarseness, shape of the tips of the brush, etc.
In an embodiment of the downhole tool of the invention the tool is configured for rotating the lever arm around the casing or tubing in operational use. That is advantageous for the brushing or honing process that is carried out by the downhole tool.
In an embodiment of the downhole tool of the invention the lever arm is configured for being rotated with respect to the support for allowing said rotation of the lever arm in operational use. This embodiment constitutes a first convenient way of achieving the rotation of the lever arm around the casing or tubing in operational use.
In an embodiment of the downhole tool of the invention the support is configured for being rotated for allowing said rotation of the lever arm in operational use. This embodiment constitutes a second convenient way of achieving the rotation of the lever arm around the casing or tubing in operational use.
In an embodiment of the downhole tool of the invention the driver means comprises a wing formed by or coupled to the lever arm for acting on well fluids in the well for creating an outwardly-directed force on the lever arm when being rotated in operational use of the downhole tool. The advantage of this embodiment is that the well fluids are used to create an outward pressure on the lever arm, thus pressing the brush against the wall of the casing or tubing for effective brushing or honing. Either a separate wing is mounted on the lever arm or the lever arm is shaped to have a wing shape by itself. In this embodiment, it is important that the shape and orientation of the wing is such that the rotational movement through the well fluids results in an outward force.
In an embodiment of the downhole tool of the invention the brush is mounted to the respective sub-arm such that the virtual axial axis of the brush makes an angle with the respective sub-arms to compensate at least partially for an angle between the sub-arms and the virtual axial axis of the downhole tool when the lever arm is driven outwardly in operational use of the downhole tool. This embodiment is advantageous when the downhole tool is run on over a bottom floor/wall of a tubing or casing, wherein the diameter of the tubing or casing is significantly larger than the diameter of the downhole tool (having typically the diameter of a wireline tractor). The parallel shift of the brush means that, when the lever arm assembly moves outward, the virtual axial axis of the brush remains parallel to the virtual axial axis of the downhole tool. A consequence of that is that a better contact is obtained between the brush and the floor/wall of a tubing or casing.
In an embodiment of the downhole tool of the invention the sub arm forms part of a lever arm assembly that further comprises a further sub-arm that is pivotably coupled to mechanical support, wherein the lever arm assembly further comprises an end portion to which said sub-arms are pivotably connected, wherein the brush is mounted on the end portion. This configuration constitutes an advantageous implementation of a downhole having at least partial angle compensation for the brush.
In an embodiment of the downhole tool of the invention the lever arm assembly is configured for parallel displacement of the brush when the lever arm is driven outwardly in operational use of the downhole tool. This embodiment effectively provides full angle compensation of the brush, when the lever arm assembly is moved outward.
In an embodiment of the downhole tool of the invention the driver means comprises an actuator for controlling the angular position of the lever arm for pushing the lever arm outwardly when being rotated in operational use of the downhole tool. This embodiment may be combined with the previous mentioned embodiment (in which case the actuator force adds to the force effected by the well fluids), but may also be used by itself.
In an embodiment of the downhole tool of the invention the brush comprises a cleaning brush and/or a honing brush. It has been mentioned before, but is repeated here that the invention may be advantageously applied in both brushing tools as well as honing tools. Combination of these two tools are also possible by implementing both a cleaning brush and a honing brush on the lever arm, or by providing said different brushes on different lever arms on the same tool.
In an embodiment of the downhole tool of the invention the lever arm is pivotably mounted to the support with the first end. In this embodiment the full length of the lever arm is advantageously used to create the maximum outward movement of the brush.
In a second aspect the invention relates more particularly to a downhole tool assembly comprising a wireline tractor and a downhole tool. In this embodiment the downhole tool of the invention is provided as an add-on tool to a wireline tractor. This embodiment constitutes a first main application area of the invention.
In a third aspect the invention relates more particularly to a wireline tractor comprising the downhole tool. Thus, contrary to the previously mentioned embodiment in this embodiment the downhole tool of the invention has been integrated into a wireline tractor. This embodiment constitutes a second main application area of the invention.
In a fourth aspect the invention relates more particularly to a method of cleaning or honing a casing or tubing in a well. The method comprising steps of:
In an embodiment of the method of the invention, in the step of providing the downhole tool, the downhole tool comprises a cleaning brush and/or a honing brush. In case the downhole tool comprises a cleaning brush, the method effectively constitutes a method of cleaning a casing or tubing, while in case the downhole tool comprises a honing brush, the method effectively constitutes a method of honing a casing or tubing. Combination of these two methods are also possible.
In the following is described an example of a preferred embodiment illustrated in the accompanying drawings, wherein:
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or an preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Throughout the Figures, similar or corresponding features are indicated by same reference numerals or labels.
The embodiment of
From
The parallel shift of the brush 12 is obtained by using a modified downhole tool 10′. This modified downhole tool 10′ comprises a modified lever arm assembly 13′ as illustrated in
In this embodiment the first sub-arm 13a of the lever arm assembly 13′ is also provided with a wing 13W (see
Even though this embodiment provides for a parallel shift, in another embodiment the brush 12 rotates a little bit when moved outward, such that there is a difference angle between said virtual axial axes 10a, 12a albeit that this difference angle is then smaller than the angle a1 between the sub-arms 13a, 13b and the virtual axial axis 10a of the downhole tool 10′. Expressed differently the brush 12 in this embodiment is mounted to the respective lever arm assembly 13′ such that the virtual axial axis 12a of the brush 12 makes an angle a2 with the respective sub-arms 13a, 13b to compensate at least partially for an angle a1 between the sub-arms 13a, 13b and the virtual axial axis 10a of the downhole tool 10′ when the lever arm 13′ is driven outwardly in operational use of the downhole tool 10′. Such effect could be obtained, when the heart-heart distance between the pivot points 14-1, 14-2 at the first end 13-1 of the lever arm is smaller than the heart-heart distance between the pivot points in the end portion 13e at the second end 13-2. Other implementations to reach the same effect are also possible. In the embodiment of
In the embodiment of
When a downhole tool 10, 10′ such as shown in
Number | Date | Country | Kind |
---|---|---|---|
20140313 | Mar 2014 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2015/050035 | 2/18/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/137819 | 9/17/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2379962 | Hoerle | Jul 1945 | A |
2930059 | Frank | Mar 1960 | A |
3107379 | Hill | Oct 1963 | A |
5076365 | Hailey | Dec 1991 | A |
8376043 | Knobloch et al. | Feb 2013 | B2 |
8439131 | Runia | May 2013 | B2 |
8499399 | Jones | Aug 2013 | B1 |
9470065 | Kruger | Oct 2016 | B2 |
9752403 | Frey | Sep 2017 | B1 |
9815096 | Osaland | Nov 2017 | B2 |
20120198637 | Coyle | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
0298663 | Jan 1989 | EP |
2305948 | Apr 2011 | EP |
1501971 | Feb 1978 | GB |
9806927 | Feb 1998 | WO |
0057100 | Sep 2000 | WO |
0166907 | Sep 2001 | WO |
2009108068 | Sep 2009 | WO |
WO-2012060712 | May 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20170067318 A1 | Mar 2017 | US |