The invention pertains to the general field of turbomachines. More specifically, the invention relates to a tool suited for the dismantling of an annular part of a turbomachine, notably a low pressure turbine disk.
The general structure of a turbomachine 1 is shown schematically in
With reference to
The low pressure turbine 7 comprises one or more turbine stages, each turbine stage being composed of a stator and a rotor. The rotor comprises a disk 10 bearing on its outer periphery vanes 11, visible in
However, the platforms 12 of the vanes 11 wear rapidly which may, in certain cases, lead to the overlapping of the platforms 12, as may be seen in
The turbomachine 1 is divided into so-called major modules, themselves comprising so-called minor modules. Such a division facilitates the mounting and the dismantling of the turbomachine 1. With reference to
In order to replace a vane 11 of the low pressure turbine 7, the third major module C is completely dismantled. The procedure used for the dismantling of the disk 10 of the low pressure turbine 7 is shown schematically in
It is noted that when the terms “horizontal” and “vertical” positioning of the turbomachine are used, it is taken to mean the position of the turbomachine or a portion of the turbomachine wherein its longitudinal axis X is, respectively, parallel and perpendicular to the support on which said turbomachine rests.
The procedures for dismantling then reassembling the disk 10 of the low pressure turbine 7 are thus complex, long and costly. In addition, the dismantling of the third major module C may expose certain sensitive parts such as roller bearings (not represented), which risk being damaged.
Furthermore, as may be seen in
Thus, to date, procedures and/or tooling making it possible to ensure dismantling and reassembly of a low pressure turbine disk that are simple, rapid and inexpensive do not exist.
The invention makes it possible to reduce the aforementioned drawbacks by proposing a solution making it possible to dismantle easily, rapidly and at lower cost an annular part of a turbomachine, notably a low pressure turbine disk.
Thus, the invention according to a first aspect relates to a tool for dismantling an annular part mounted around a turbomachine shaft comprising:
“Annular part” is taken to mean a part having a circular through cavity.
During the dismantling of the annular part, the tool according to the invention is positioned facing the annular part to extract such that the opening arranged in the fastening and maintaining means is traversed by the shaft of the turbomachine. It is noted that the opening is traversed by the shaft uniquely when it projects with respect to the annular part during dismantling. The fastening and maintaining means are fixed on the annular part which is next extracted from the remainder of the turbomachine by axially displacing the tool outwards.
The use of the tool according to the invention makes it possible to simplify the procedure for dismantling the annular part while reducing the time and the costs necessary for dismantling. Indeed, when the tool is used to dismantle a disk of the low pressure turbine, this makes it possible to do without the steps of:
The dismantling of the disk only necessitates extracting, beforehand, the exhaust casing of the turbomachine positioned downstream of the disk in such a way as to access the disk. The tool is next positioned opposite the disk in order to fix the fastening and maintaining means on the disk. Once the fastening and maintaining means have been fixed on the disk, a simple axial displacement of the tool outwards makes it possible to separate the disk from the remainder of the turbomachine. It is noted that after the removal of the exhaust casing, the shaft of the turbomachine is projecting with respect to the disk. Thus, during the positioning of the tool, the shaft traverses the opening arranged in the fastening and maintaining means until the latter are sufficiently close to the disk to enable the fixing of the tool on the disk. The presence of the opening arranged in the fastening and maintaining means thus makes it possible to extract the annular part without having to extract beforehand the shaft on which the annular part is mounted. It is also noted that the dismantling of the exhaust casing may be carried out using the same tool, which makes it possible to reduce costs.
Furthermore, the dismantling tool according to the invention makes it possible to facilitate the reassembly of the disk and the exhaust casing since there are fewer parts to assemble on the turbomachine. The procedure for reassembling the disk and the exhaust casing is thus less long and less expensive.
Moreover, certain sensitive parts, such as bearings, no longer risk being exposed during dismantling because it is no longer necessary to completely dismantle the third major module C.
Apart from the characteristics that have been set out in the preceding paragraph, the dismantling tool according to the invention may have one or more additional characteristics among the following, considered individually or according to all technically possible combinations thereof.
In a non-limiting embodiment, the fastening and maintaining means are rotationally moveable with respect to the support between:
In a non-limiting embodiment, the tool comprises means for rotating the fastening and maintaining means with respect to the support, said rotating means being positioned between the support and the fastening and maintaining means.
In a non-limiting embodiment, the fastening and maintaining means are arranged on a peripheral portion of the support to allow the rotation of the fastening and maintaining means with respect to the support when the annular part is fixed to the fastening and maintaining means.
In a non-limiting embodiment, the rotating means comprise locking means suited to maintaining the fastening and maintaining means in the first position and in the second position.
In a non-limiting embodiment, the fastening and maintaining means are formed by a collar comprising through orifices suited to receiving first fixing means.
In a non-limiting embodiment, the tool comprises second fixing means suited to coupling the fastening and maintaining means and the annular part and cooperating with the fastening and maintaining means in such a way as to fix the fastening and maintaining means on the annular part.
In a non-limiting embodiment, the tool comprises means for adjusting the centre of gravity of the tool.
In a non-limiting embodiment, the adjustment means are formed by:
Furthermore, the invention according to a second aspect relates to a method for dismantling and upkeeping an annular part mounted around a turbomachine shaft having a longitudinal axis, using the tool according to the first aspect of the invention. The dismantling method comprising the following steps:
Finally, the invention according to a third aspect relates to a method for reassembling an annular part around a turbomachine shaft having a longitudinal axis using the tool according to the first aspect of the invention. The method according to the third aspect comprising the following steps:
The figures are only presented for indicative purposes and are in no way limiting. The figures show:
in
in
in
in
in
in
in
in
in
in
in
Other characteristics and advantages of the invention will become clear from reading the detailed description that follows, with reference to the appended figures.
With reference to
The support 101 is suited to supporting an annular part 10, 14 of a turbomachine 1 when said annular part 10, 14 is fixed to the fastening and maintaining means 102. The annular part 10, 14 is for example a disk 10 of the low pressure turbine 7 such as represented in
The shape, the dimensions and the material of the support 101 are chosen such that the support 101 has sufficient mechanical strength so as not to break during the dismantling, the reassembly or the upkeep of the annular part 10, 14. “Upkeep” is notably taken to mean the replacement of a vane. Advantageously, the support 101 is made of steel. Furthermore, as may be seen in
Moreover, according to the embodiment shown in
In addition, the support 101 comprises means for retaining 107 the annular part 10, 14 visible in
Advantageously, the tool 100 also comprises gripping means 1011 making it possible to grab, maintain and displace the tool 100 during the dismantling, the reassembly or the upkeep of the annular part 10, 14, for example using a lifting system. In the embodiment illustrated in
Furthermore, the fastening and maintaining means 102 ensure the fixing of the tool 100 on the annular part 10, 14 during the dismantling, the upkeep or during the reassembly of the annular part 10, 14. For this purpose, through orifices 105 are arranged in the fastening and maintaining means 102 and are suited to receiving first fixing means 106. According to a non-limiting embodiment, the first fixing means 106 cooperate with second fixing means (not represented) of the tool 100 to ensure the fixing of the fastening and maintaining means 102 on the annular part 10, 14. Advantageously, the second fixing means are formed by removable hooks which enable the coupling of the annular part 10, 14 with the fastening and maintaining means 102.
According to the embodiment of
Furthermore, the fastening and maintaining means 102 comprise a through opening 1021 of which the shape and the dimensions are suited to receiving an axial shaft 8 of the turbomachine 1, visible in
According to the embodiment of
In an advantageous manner, the characteristics of the fastening and maintaining means 102, notably the material(s) and/or the protective elements used, are chosen in such a way as to avoid any damage of the annular part 10, 14. Thus, the fastening and maintaining means 102 are made of a material having sufficient strength to support the annular part 10, 14 when it is fixed on the fastening and maintaining means 102. Advantageously, the fastening and maintaining means 102 are made of steel.
Furthermore, the fastening and maintaining means 102 are rotationally moveable with respect to the support 101 between a first position P1 and a second position P2.
In the first position P1, illustrated in
In the second position P2, illustrated in
Furthermore, according to a non-limiting embodiment, the fastening and maintaining means 102 are arranged on a peripheral portion of the support 101 in such a way as to allow the rotation of the fastening and maintaining means 102 with respect to the support 101 when the annular part 10, 14 is fixed to the fastening and maintaining means 102. According to the embodiment shown in
The rotating means 103 ensure the rotation of the fastening and maintaining means 102 with respect to the support 101 in such a way as to enable the passage from the first position P1 to the second position P2, and vice versa. In particular, the passage from the first position P1 to the second position P2 is carried out by switching the fastening and maintaining means 102 or the annular part 10, 14 (when it is fixed to the fastening and maintaining means 102) by an angle of 90° with respect to the support 101.
The rotating means 103 are positioned between the support 101 and the fastening and maintaining means 102. According to a non-limiting embodiment, the rotating means 103 are composed of a spindle and a collar forming a pivot link. Naturally, the rotating means 103 may be formed by any system making it possible to form a pivot link, for example a roller.
Furthermore, the rotating means 103 comprise locking means suited to maintaining the fastening and maintaining means 102 in the first position P1 or in the second position P2. The locking means are for example formed by a pinning at 0° and 90°.
The adjustment means 104 are suited to modifying the centre of gravity of the tool 100, in particular when the annular part 10, 14 is fixed to the tool 100 in order to ensure the stability of the annular part 10, 14 during the dismantling and the reassembly of the annular part 10, 14. According to a non-limiting embodiment, the adjustment means 104 are formed by a mechanical axial displacement means comprising:
In an alternative embodiment of the invention, the adjustment means 104 are formed by an electric, hydraulic displacement means or any other axial displacement means.
In a positioning step 201, the tool 100 is positioned facing the annular part 10, 14 such that the opening 1021 of the fastening and maintaining means 102 is facing a central cavity 20 of the annular part 10, 14. The fastening and maintaining means 102 are maintained in the first position P1 during the positioning step 201. Advantageously, the fastening and maintaining means 102 are locked in the first position P1 by the locking means. Furthermore, when the shaft 8 of the turbomachine 1 is projecting with respect to the annular part 10, 14, the step of positioning 201 the tool 100 comprises the positioning of the opening 1021 of the fastening and maintaining means 102 around the shaft 8 then the axial displacement of the tool 100 inwards, i.e. in the direction of the annular part 10, 14.
In a fixing step 202, the fastening and maintaining means 102 are fixed on the annular part 10, 14. Advantageously, the fixing step 202 is carried out by positioning beforehand the second fixing means against the fastening and maintaining means 12 and the annular part 10, 14 in such a way as to ensure their coupling. The first fixing means 106, here formed by fixing screws, are next inserted through the through orifices 105 arranged in the fastening and maintaining means 102 then tightened against the removable hooks to fix correctly the fastening and maintaining means 102 and the annular part 10, 14.
In a displacement step 203, the tool 100 fixed to the annular part 10, 14 is displaced axially outwards in such a way as to separate the annular part 10, 14 from the remainder of the turbomachine 1. It is noted that “axial” displacement is taken to mean a displacement along a direction parallel to the axis X of the turbomachine 1.
In an upkeep step 204, the annular part 10, 14, fixed to the tool 100, is placed on a frame 13 in order to carry out the maintenance of the annular part 10, 14 as may be seen in
During the dismantling of a disk 10 of a low pressure turbine 7 such as represented in
In a switching step 301, the fastening and maintaining means 102 are switched from the second position P2 to the first position P1 by the rotating means 103. Advantageously, the fastening and maintaining means 102 are locked in the first position P1 by the locking means. It is noted that if the fastening and maintaining means 102 have been locked in the second position P2 before the switching step 301, it is necessary to unlock the position of the fastening and maintaining means 102 before being able to make it switch to the first position P1.
In a positioning step 302, the tool 100 on which is fixed the annular part 10, 14 is positioned facing the turbomachine 1 such that the shaft 8 of the turbomachine can traverse the opening 1021 arranged in the fastening and maintaining means 102. In other words, the opening 1021 of the fastening and maintaining means 102 is positioned facing the turbomachine 1 in such a way as to surround the shaft 8 of the turbomachine 1.
In a displacement step 303, the tool 100 is displaced axially inwards, i.e. towards the turbomachine, until the annular part 10, 14 returns to its initial position in the turbomachine. “Initial position” is taken to mean the position of the annular part 10, 14 before the dismantling of said annular part 10, 14 of the turbomachine 1.
In a disengagement step 304, the fastening and maintaining means 102 are disengaged from the annular part 10, 14.
In an extraction step 305, the tool 100 is extracted by displacing it axially to the outside of the turbomachine 1.
The invention is obviously not limited to the exemplary embodiments described above for which other alternative embodiments could be provided without however going beyond the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1763296 | Dec 2017 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2018/000276 | 12/28/2018 | WO | 00 |