The present invention relates generally to a tool that may be used in connection with a horizontal directional drilling system, comprised of a plurality of drill pipes that are joined together at pipe joints and to a method for using such a tool. More particularly, the invention comprises a tool that is used to perform various functions on or with respect to the drill pipe sections of the drill string on the exit side of the bore.
Many utility lines, pipelines and other underground components are installed in or under the ground by boring a borehole in a generally-horizontal direction in the ground rather than by digging a trench. This type of construction, which is sometimes referred to as “horizontal boring”, “directional drilling” or “horizontal directional drilling”, reduces the need to dig a trench in order to install an underground component, and thereby saves several steps in the installation process. If no trench is dug, there will be no trench to fill, and no disturbed surface to reclaim. A directional drilling machine may be operated to drill a bore along a planned path underground. Typically, the planned path is generally arcuate in shape from the entry point at the surface of the ground, continuing underneath a roadway, river or other obstacle, to an exit point on the surface on the other side of the obstacle.
A typical directional drilling machine includes a thrust frame that can be aligned at an oblique angle with respect to the ground. Mounted on a drive carriage on the thrust frame is a pipe-rotation mechanism that is adapted to rotate and thrust or retract a series of interconnected pipe sections commonly referred to as a drill string). The drive carriage also includes a carriage drive assembly that is adapted to push the carriage along the thrust frame. The combination of rotation of the drill string and longitudinal movement of the drive carriage along the thrust frame causes the drill string to be advanced into or withdrawn from the ground.
To drill an original or pilot bore using a directional drilling machine, the thrust frame is oriented at an angle relative to the ground, and the drive carriage is retracted to an upper end of the frame. A drill pipe section is coupled to the pipe-rotation mechanism on the drive carriage. A boring tool or cutting head is mounted to the terminal end of the pipe, and the drive carriage is driven in a downward direction along the inclined thrust frame. As the drive carriage is driven downwardly, the pipe-rotation mechanism rotates the pipe about the boring axis, thereby causing the pipe (with boring tool mounted thereon) to be thrust into the ground to drill or bore a hole.
As the drilling operation proceeds, the drill string is lengthened by adding pipe sections to the string. The pipe sections may be provided with a male threaded connector on one end and a female threaded connector on the other end. Each time a pipe section is added to the drill string, the pipe section being added is aligned with the drill string and the threaded connector on its far end is mated with the threaded connector on the near end of the drill string. Generally, the drill string is restrained against rotation while the pipe being added is rotated to engage the threaded connector on the far end of the pipe section with the threaded connector on the near end of the drill string to create a threaded connection between the components.
Hydraulically actuated wrenches are typically mounted on the horizontal directional drilling rig may be used to hold the drill string as pipe sections are added to lengthen the drill string. These wrenches are also used to separate pipe sections and typically comprise two pairs of opposed jaws, one for the male-threaded pipe and the other for the female-threaded pipe of the adjacent components of the drill string. Each pair of jaws is adapted to clamp around a pipe section, one on the far side and the other on the near side of the threaded connection. At least one pair of jaws of the wrench assembly will pivot with respect to the other pair of jaws to twist one of the pipe sections with respect to the other. However, one skilled in the art will appreciate that connecting the pipe sections may be accomplished using one wrench and the rotating drive of the HDD machine.
When the boring tool reaches a desired depth during the drilling operation, it can be directed along a generally horizontal path and back up to break the surface of the ground at a distant exit point. To control the direction of the borehole, a boring tool with an angled-face or a deflection member may be used. When the direction of the borehole must be changed, the boring tool is positioned with the angled-face or deflection member oriented to cause the tool to move in the desired direction. This ability to change the direction of travel of the drill string also allows the operator to steer the drill string around underground obstacles like large roots and rocks.
When the pilot bore is complete, the boring tool is removed from the second end of the drill string, and the pipe sections are disconnected from each other to disassemble the drill string on the exit side of the bore. In the alternative, the bore may be enlarged by replacing the boring tool with an enlarging device, commonly known as a backreamer. If a backreamer is used, it will be connected to the far or distal end of the drill string in place of the boring tool and moved through the pilot bore back towards the boring machine, either with or without rotation of the drill string. The backreamer expands and stabilizes the walls of the bore, generally while pulling a product pipe or other underground component through the enlarged bore behind it. Movement of the backreamer back towards the drilling machine is accomplished by driving the drive carriage in a rearward direction on the thrust frame to withdraw a pipe section, disconnecting the withdrawn pipe section from the drill string, connecting the next pipe section remaining in the drill string to the pipe rotation mechanism on the drive carriage and repeating the process until all of the pipe sections have been withdrawn from the ground. Each pipe section in the drill string may be uncoupled from the drill string using the same wrench assembly that was used to connect the drill pipes when the pilot bore was drilled. The disconnected pipe section is placed in a stack or loaded into a pipe section magazine of the directional drilling machine.
There are several operations that must be performed on the exit side of the bore where the drill string emerges from the ground. For example, the boring tool may be disconnected from the end of the drill string and the pipe sections of the drill string may be disconnected one by one from the drill string. If a backreamer is used, it may be installed in place of the boring tool. High torque is typically used in order to loosen the boring tool or a pipe section for removal from the drill string or to install the backreamer on the drill string. Most commonly, the drill crew will use a pair of large wrenches such as pipe wrenches or oil field tongs to remove the boring tool and each pipe section, or to install a backreamer. Frequently, the drill crew will connect the handle of the wrench to the bucket of a hydraulic excavator using a chain or strap, and then use the excavator to apply a vertical force to the bucket while the drilling rig operator rotates the drill string to loosen the boring tool or a pipe section or to tighten the backreamer on the end of the drill string. If the drill string is to be disassembled on the exit side, the individual pipe sections may be placed in a stack or in a pipe section magazine. These pipe sections are heavy and long, and it is labor-intensive to disconnect them manually on the exit side of the drill site.
One embodiment of the invention is directed to an apparatus for boring using a drill string. The drill string comprises a first end, a second end, and a middle portion wherein the middle portion is below a surface of the ground. The apparatus comprises a horizontal directional drilling machine, and a pipe handler comprising a vise assembly, and a first and a second retainer assembly. The horizontal directional drilling machine is located at the first end of the drill string. The vise assembly is to apply a twisting force to the second end of the drill string. The first and second retainer assembly are each located on a first side of the vise assembly to hold a pipe section.
In another embodiment, the invention is directed to a method of drilling a hole having an entry side and an exit side. The method comprises boring a hole with a horizontal directional drilling machine, advancing a drill string comprised of a plurality of pipe sections from the entry side of the hole to the exit side of the hole, placing a tool comprising a vise assembly, a roller assembly, and a retainer assembly proximate the exit side of the hole, adjusting the tool such that a pair of adjacent pipe sections of the drill string are within the vise assembly of the tool, separating the pair of adjacent pipe sections with the vise assembly, unthreading one of the pair of adjacent pipe sections from the drill string through operation of the roller assembly, and retaining the unthreaded pipe section in the retainer assembly.
Referring now to the drawings,
With reference now to
The tool 30 comprises a frame 34. The frame 34 is connected to the hydraulic machine 32 by an attachment assembly 42 which will be described in greater detail with reference to
With reference now to
With continued reference to
Bracket assemblies 72 provide attachment between the components 62, 64, 66, 68, 70 of the tool and the frame 34. In one embodiment, the roller assembly 70 and retainer assemblies 66, 68 may be detachable, or movable along the frame 34. As shown, the bracket assemblies 72 have multiple configurations relative to the frame 34. The bracket assemblies 72 may be welded to a bottom side of the frame 34, or may include a top portion 73 that extends over the top of the frame 34. Further, a cap 74 may be bolted on top of the bracket assembly 72.
The first vise assembly 62 and second vise assembly 64 each comprise a first jaw 84 and second jaw 86. First jaw 84 and second jaw 86 are mounted so as to be moveable with respect to each other between an open position and a closed position in which the jaws may grip a pipe section. An actuator 88 is mounted on the first jaw 84 and adapted to move the first jaw between the open position and the closed position. Similarly, an actuator 88 is mounted on the second jaw 86 and adapted to move the second jaw between the open position and the closed position. The actuator 88 may comprise a hydraulic motor or other suitable actuator. Thus, first jaw 84 and second jaw 86 of the first vise assembly 62 will cooperate to grip a pipe section when in the closed position.
With reference now to
The first vise assembly 62 is shown offset from second vise assembly 64. One of ordinary skill in the art will appreciate that second vise assembly 64 may alternatively be fixed and first vise assembly 62 may be moveable with respect thereto. Furthermore, in another embodiment of the invention, both vise assemblies 62, 64 may be moveable with respect to each other to apply a twisting force to the drill string 22 (
With reference now to
As shown, the second retainer assembly 68 is shown with identical components as the first retainer assembly 66, spaced apart from the first retainer assembly to provide two retaining locations for the pipe section 80. One of ordinary skill in the art will appreciate that the first 66 and second 68 retainer assemblies may be given different locations along the frame 34. As shown, the second retainer assembly 68 is proximate the second end 40 of the frame. Further, it is anticipated that the functions of the tool 30 may be performed with only one retainer assembly.
The roller assembly 70 comprises means for rotating a pipe section 80 that is received in the first retainer assembly 66 and in the second retainer assembly 68 about a long axis of the pipe section. The roller assembly 70 may be used to rotate a drill pipe section to engage the threads or disengage the threads of the threaded connectors of drill pipe section 81. In the embodiments shown herein, limited radial extent of the twisting force that second vise assembly 64 would require that second vise assembly grip, twist and release the pipe section 80 multiple times to disconnect it from the drill string. The roller assembly 70 is provided to overcome this limitation. The roller assembly 70 comprises first roller jaw 130 comprising a first roller 134 and second roller jaw 132 comprising a second roller 136. Each of first roller jaw 130 and second roller jaw 132 is pivotally mounted with respect to the frame. Preferably, each roller jaw 130, 132 comprises a plurality of rollers that are rotationally driven. The roller assembly 70 further comprises a motor 138 to rotate each of the rollers 134, 136. As shown in
With continued reference to
Control valve assembly 150 may include a radio control receiver that is operatively connected to the hydraulic actuators 88, 116, 122, 140 of the tool 30 and the cylinders 50, 60 (
While the majority of this description describes using the tool 30 for the purpose of removing, or breaking out, sections of pipe from the drill string 22, one of ordinary skill could envision the opposite purpose. For example, after a drill bit (not shown) used for primary boring operations is removed from the exit point 28 of the bore 24 and removed from the drill string 22, a backreamer or other tool can be provided to the drill string. This is accomplished by “making up” the drill string 22 using the tool 30. As shown in
Although this description contains many specifics, these should not be construed as limiting the scope of the invention, but as merely providing illustrations of some of the presently preferred embodiments thereof.
This application is a continuation of U.S. patent application Ser. No. 14/094,321 filed Dec. 2, 2013, which claims the benefit of U.S. provisional patent application Ser. No. 61/732,068, filed on Nov. 30, 2012, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5060542 | Hauk | Oct 1991 | A |
6179065 | Payne et al. | Jan 2001 | B1 |
6334376 | Torres | Jan 2002 | B1 |
8074537 | Hunter | Dec 2011 | B2 |
8109179 | Richardson | Feb 2012 | B2 |
8145971 | LaValley et al. | Apr 2012 | B2 |
8157495 | Randall | Apr 2012 | B1 |
8348319 | LaValley et al. | Jan 2013 | B2 |
8490519 | LaValley et al. | Jul 2013 | B2 |
20020079105 | Bergeron | Jun 2002 | A1 |
20030132030 | Tompkins | Jul 2003 | A1 |
20090057019 | LaValley et al. | Mar 2009 | A1 |
20120297933 | LaValley et al. | Nov 2012 | A1 |
20140151124 | Randall et al. | Jun 2014 | A1 |
20150259993 | Patel et al. | Sep 2015 | A1 |
Entry |
---|
PCT Patent Cooperation Treaty, “PCT International Search Report”, dated Mar. 11, 2014, 3 pages, Korean Intellectual Property Office, Republic of Korea. |
Number | Date | Country | |
---|---|---|---|
20170284163 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
61732068 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14094321 | Dec 2013 | US |
Child | 15626324 | US |