The present invention relates to cutting bit holders, especially to holders which support pressed-in replaceable sleeves that carry rotatable cutting bits.
Drum-type cutters are conventional in the mining and road-working industries for example, wherein cutter bits are mounted on a drum which rotates about a horizontal axis. Such cutters can be used to cut through minerals in a mine, or to rip up asphalt or concrete from a roadway. The cutter bits, which are carried by holder blocks welded to the outer surface of the drum, are rotatable about their own longitudinal axes so as to be self-sharpening. During a cutting operation, not only do the bits tend to wear, but the holder blocks wear as well. That is, the area of the holder block that surrounds the bit-receiving hole wears due to abrasion thereof by the materials being cut. It will be appreciated that the need to replace the welded-on holder blocks results in a serious expenditure of time and money.
To minimize that problem, it has been proposed to mount each cutter bit in a replaceable hollow sleeve which is inserted into a respective holder block. The sleeve includes a flange that overlies the area of the holder block that surrounds the mouth of the bit-receiving hole, and thereby shields the holder block from appreciable wear. Instead, the sleeves become worn and are replaced when necessary.
One type of such sleeve 10, disclosed in U.S. Pat. No. 5,106,166 and depicted herein in
In order to enhance the securement of the sleeve, it has been proposed to mount the sleeve by an interference fit, or press fit. One known type of interference fit comprises a long single cylindrical interference fit. Another type comprises a pair of short cylindrical (or conical) bands of interference fit having different respective cross-sectional sizes (e.g., see U.S. Pat. No. 5,302,005). The provision of such short bands of interference fit is intended to eliminate the need for separate retainers such as split-ring clips and anti-rotation keys. Nevertheless, some sleeves still become prematurely dislodged. Moreover, as the sleeve is being inserted, closed spaces are created between the short bands and the hole surface which can become filled with lubricating oil that is used to facilitate the installation of the sleeve. As the sleeve is advanced into the hole, the oil can become trapped and pressurized as the volume of the spaces diminishes, thereby tending to force the sleeve back out of the hole. As the drum rotates during a cutting operation, the cutting forces push the sleeve into the hole during a cutting phase, but then the pressurized oil pushes the sleeve out of the hole when the respective bit moves out of engagement with the material being cut. Such a reciprocating action of the sleeve can produce undesirable wear of the hole surface.
It would be desirable to ensure that the sleeve is not able to be pushed out of the hole by pressurized lubricating oil, as well as to maximize the forces holding the sleeve against axial and rotary movements within the hole in order to prevent dislodgement of the sleeve during operation.
At least some of the objects of the present invention are achieved by a hollow sleeve which is adapted to be mounted in a hole of a holder block to receive a cutter bit. The sleeve comprises a shank defining a longitudinal axis and including an outer periphery having at least one surface section which includes longitudinally spaced front and rear ends. A portion of the at least one surface section situated between the front and rear ends is spaced farther from the axis than are the front and rear ends. A center through-hole extends axially through the shank.
Preferably, the at least one surface section comprises a plurality of axially adjacent surface sections that become successively smaller in cross-section in a direction away from the front end.
Another aspect of the invention relates to the above described hollow sleeve in combination with a holder block in which the sleeve is received.
Yet another aspect of the invention relates to a hollow sleeve whose shank includes an outer periphery having a radially stepped configuration wherein the axially adjacent surface sections therein have a generally front-to-rear extending groove formed therein. Such a groove permits the escape of lubricating oil during installation of the sleeve. Preferably, the groove extends parallel to the axis.
Yet another aspect of the invention relates to a hollow sleeve whose shank includes an outer periphery having a radially stepped configuration defined by three surface sections, consisting of front, rear, and intermediate surface sections. Each surface section has a longitudinal length which is substantially equal to one third of a longitudinal distance from the front end of the front surface section to the rear end of the rear surface section. Such relatively long surface sections establish a particularly effective interference fit.
The objects and advantages of the invention will become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawings in which like numerals designate like elements and in which:
Depicted in
The surface sections 50a–50c are neither cylindrical nor conical. Rather, they are configured wherein a portion of each surface section situated between its front and rear ends is spaced farther from the axis 48 than are the front and rear ends of such surface section. Thus, for example, with reference to
The curvatures of the spherical surface sections 50a–c are shown somewhat exaggeratedly in the drawings. For example, in a block in which the diameter d at the front end of the hole 46 is 2⅜ inches, the radius r for each of the surface sections could be about 391 inches. Shapes for the surface sections other than spherical are possible, such as elliptical or parabolic for example.
The mouth 52 of the hole 46 is slightly chamfered as can be seen in
The presence of the flange 68 is optional. Instead, there could be provided an abutment on the block that is engaged by a rear end of the shank to terminate the insertion.
The shank 64 includes an outer periphery having a radially stepped configuration that substantially conforms to that of the hole 46. That is, the outer surface of the shank includes a plurality of axially adjacent sections 70a, 70b, 70c that become successively smaller in cross-section in a direction away from the flange 68 and which create an interference fit with the hole. For example, the cross-sectional shape of the surface sections 70a–70c of the shank could be slightly larger than the corresponding cross-sectional shape of the surface section of the hole 46 to achieve an interference fit preferably in the range of 0.003–0.004 inches. It will be appreciated that a cross-section taken through the shank 64 could be of circular configuration, as can be seen in
Since the configuration of the outer peripheral surface of the shank generally corresponds to the surface of the hole 46, it will be appreciated that each surface section 70a–70c has longitudinally spaced front and rear ends, wherein a portion of each surface section 70a–70c situated between the front and rear ends thereof is spaced farther from the axis 66 than are the front and rear ends of the surface section.
For instance, and as noted previously, the midsection of each surface section is spaced farther from the radius than are the ends of the surface section, e.g., by 0.0005 inches. That means that as the surface sections 70a, 70b, 70c enter their respective surface sections 50a, 50b, 50c, there occurs a deformation of the shank and/or the hole surface by 0.0005 inches in addition to the deformation necessary to produce the interference fit of 0.003–0.004 inches. Once the surfaces have mated, the material of the block and/or shank will snap back by 0.0005 inches due to the inherent resiliency thereof, thereby providing an indication that the mating has occurred, as well as providing an extra retaining force for holding the sleeve within the hole 46. That is, after the material has snapped back, there remains the interference fit of 0.003–0.004 inches, but in order for the shank to be dislodged from the hole, not only is it necessary to overcome that normal interference fit of 0.003–0.004 inches, but also the additional deformation of 0.0005 inches must take place.
Furthermore, it will be appreciated that the overall surface area of the spherical surface sections 70a–70c and 50a–70c is greater than if those surfaces were cylindrically or conically shaped. The extra surface area provides added resistance to rotation of the sleeve once the sleeve has been installed.
Although the description has thus far recited that the surfaces 50a–50c are concave, and the surfaces 70a–70c are convex, but the reverse could be the case instead.
The rear end of the shank 64 is provided with an external annular recess 80 which will project slightly from the rear end of the hole once the sleeve has been fully installed, as can be seen in
The internal surface 90 of the sleeve (see
In order to install the shank 64 within the hole 46 (or remove it from the hole), it is necessary to apply considerable longitudinal force to the sleeve, which is often performed by hydraulically powered equipment.
Depicted in
It has heretofore been experienced that the pressurized oil in the spaces will tend to bias the shank out of the hole. During a cutting operation, as the cutter bits enter the material being cut, the force of the cutting action will push the sleeves rearwardly against the force of the pressurized oil. However, when the cutter bits emerge from the material being cut, the pressurized oil will force the shanks slightly from the hole. As this action repeats itself, the shanks will reciprocate within the hole, resulting in a wearing of the hole surfaces.
That problem is alleviated by the present invention because the frictional or interfering engagement between the surface sections of the shank and the surface sections of the hole are not continuous in the circumferential direction. Instead, small grooves 94 are formed in the outer periphery of the shank which extend in a front-to-rear direction, preferably parallel to the axis 66. Alternatively, the grooves could extend helically along the shank. Three such grooves 94 are depicted in the drawings at 120 degrees apart, but any suitable number of grooves could be employed. Those grooves 94 serve as discharge passages for pressurized oil, which will relieve any force that the oil would otherwise have tended to impart to the sleeve. The slots are shown in a somewhat exaggerated state in the figures. In that regard, a suitable groove could have a width in the circumferential direction of at least 0.010 inches, and a depth of at least 0.005 inches.
From the foregoing description, it will be appreciated that in order to install the sleeve into the block 42, it is necessary to insert the shank into the hole 46 until the initial resistance occurs, as shown in
Once the shank has fully entered the hole, the distance difference X is eliminated as the surfaces snap-back, thereby leaving the interference fit of 0.003–0.004 inches. In order to dislodge the sleeve, the additional deformation of X must re-occur. Thus, the sleeve is very reliably held in place.
The lubricating oil which has been applied to the shank to facilitate installation thereof will be free to flow out of the hole along the groove or grooves 94, rather than being pressurized in a manner opposing a full installation of the sleeve. Once the surface sections 70a–c are fully inserted into the respective surface sections 50a–50c, the retainer 82 is inserted into the slot 80 of the shank in order to further bias the shank rearwardly.
It will be appreciated that the present invention provides a more effective interference fit of the shank within the hole to more effectively resist premature longitudinal dislodgement of the sleeve, as well as to resist rotation of the sleeve within the hole.
It is also noted that the sleeve 60 is securely held in place due to the provision of three surface sections i.e., the front, rear, and intermediate surface sections 50a, 50c, 50b, respectively as compared to the two surface sections provided in the prior art. Moreover, the longitudinal length L of each surface section is substantially equal to the longitudinal distance L′ from the front end 50a′ of the front surface section 50a to the rear end 50c″ of the rear surface section 50c. Thus, even if the surface sections were of cylindrical shape instead of spherical shape, a more secure interference fit would occur than occurs in the prior art.
It has been found that the feature of the invention wherein a portion of the outer surface of the shank (or hole) located between the front and rear ends of that surface is spaced farther from, or closer to, the axis than are the front and rear ends, provides a securement of the shank that is so effective, it might require only a single surface section as shown in
Moreover, such an expedient may not even require the need for a separate sleeve fastener 82, as demonstrated by the arrangement shown in
As an alternative to the embodiments shown in
The sleeve could have a flange or collar C that engages the holder block to limit the extent of insertion into the hole, as shown in
Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3143177 | Galorneau et al. | Aug 1964 | A |
3397012 | Krekeler | Aug 1968 | A |
3499685 | Kniff | Mar 1970 | A |
3749190 | Shipman | Jul 1973 | A |
3941495 | Duncan | Mar 1976 | A |
4201421 | Den Besten et al. | May 1980 | A |
4247147 | Rettkowski | Jan 1981 | A |
4247150 | Wrulich et al. | Jan 1981 | A |
4299424 | LeBegue et al. | Nov 1981 | A |
4333687 | Barnstorf | Jun 1982 | A |
4337980 | Krekeler | Jul 1982 | A |
4456306 | Wrulich et al. | Jun 1984 | A |
4542942 | Zitz et al. | Sep 1985 | A |
4575156 | Hunter et al. | Mar 1986 | A |
4632463 | Sterwerf, Jr. | Dec 1986 | A |
4684176 | Den Besten et al. | Aug 1987 | A |
4728153 | Ojanen et al. | Mar 1988 | A |
4836614 | Ojanen | Jun 1989 | A |
4850649 | Beach et al. | Jul 1989 | A |
4875532 | Langford, Jr. | Oct 1989 | A |
4921310 | Hedlund et al. | May 1990 | A |
4978173 | Rothkegel | Dec 1990 | A |
5067775 | D'Angelo | Nov 1991 | A |
5088797 | O'Neill | Feb 1992 | A |
5106166 | O'Neill | Apr 1992 | A |
5302005 | O'Neill | Apr 1994 | A |
5685381 | Kloppers et al. | Nov 1997 | A |
5725283 | O'Neill | Mar 1998 | A |
5738415 | Parrott | Apr 1998 | A |
5769505 | Siddle et al. | Jun 1998 | A |
6113195 | Mercier et al. | Sep 2000 | A |
6176552 | Topka, Jr. et al. | Jan 2001 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6623084 | Wasyleczko | Sep 2003 | B1 |
6712431 | Bosch et al. | Mar 2004 | B1 |
6786557 | Montgomery, Jr. | Sep 2004 | B2 |
6854810 | Montgomery, Jr. | Feb 2005 | B2 |
20030015907 | Sollami | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
3413334 | Nov 1984 | DE |
1 218 308 | Jan 1971 | GB |
2 071 184 | Sep 1981 | GB |
33 07 910 | Sep 1984 | GB |
2 151 284 | Jul 1985 | GB |
36 30 443 | Mar 1988 | GB |
2 230 801 | Oct 1990 | GB |
2 273 513 | Jun 1994 | GB |
2 285 464 | Jul 1995 | GB |
2 327 446 | Jan 1999 | GB |
2 369 137 | May 2002 | GB |
WO 0034626 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060186724 A1 | Aug 2006 | US |