THIS invention relates to tool inserts and more particularly tool inserts which can be used as cutting elements in rotary drilling bits intended for subterranean rock drilling.
The use of diamond compacts, also known as PCD, as cutters in drilling operations is well known due to the high abrasion resistant properties of diamond cutters. It is also well established that diamond cutters cannot be used satisfactorily for milling or drilling through ferrous substrates such as steel. Therein lies a problem in the use of diamond cutters in certain down the hole drilling operations, particularly with regard to subterranean directional drilling, such as drilling horizontally into a rockbed from an underground location in a vertical borehole or shaft.
In order to drill horizontally into a rockbed from an underground location, it is necessary to change the direction of movement of the drill bit from a vertical direction to a horizontal direction. To do so, a steel casing is typically positioned down the vertical borehole or shaft, creating a lining therefor in the region requiring horizontal drilling. Located within the steel casing is a deflector which is positioned adjacent the position where horizontal drilling is to be carried out. The function of the deflector, which is generally wedge-shaped, is to cause the drill to change direction and begin milling through the steel casing to create a window to the bedrock.
As PCD is not suitable for drilling through the steel casing due to reactions with the ferrous materials, an alternative drill bit insert is required. Accordingly, tungsten carbide cutters are typically used in the drill bit to mill through the steel casing. Once through the casing, the tungsten carbide inserts have to be replaced with abrasive resistant cutters such as diamond cutters in order to drill into the bedrock. This means that the drill bit has to be removed and replaced with an appropriate bit. As the drill strings that have to be removed are very long, this is a time consuming exercise that results in costly downtime.
According to one aspect of the invention, a tool insert comprises:
According to a further aspect of the invention, a method of drilling a horizontal or angled hole in a subterranean rock formation includes the steps of:
wherein the depth of the protective layer is such as to protect the primary cutting edge whilst milling through the casing or lining and to expose the primary cutting edge upon encountering the subterranean rock formation.
The above method can also be used for the drilling of multiple directional holes from a central vertical borehole.
The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings in which:
Referring to
The drill bit 14 is directed down a passage 16 within a steel tubular casing 18. The steel casing 18 is anchored in a borehole or shaft 20 drilled into a subterranean bedrock or rock formation 22.
In order for the rotary drill bit 14 to drill a horizontal or angled hole in the bedrock 22 in the region indicated by an ‘X’, it is necessary for the drill bit 14 to be redirected from a vertical direction of movement to a horizontal or angled direction of movement, along the arrow 24. A deflector 26, which is attached to the casing 18 and which has previously been positioned adjacent the region ‘X’, causes the bit 14 to change direction in this manner. The deflector 26 is supported by an anchor 28.
As mentioned previously, in order to drill through the casing 18, typically cemented tungsten carbide cutters have traditionally been used. Once a window 30 has been milled through the casing 18, the drill bit 14 is withdrawn and replaced with a drill bit having abrasion resistant cutters such as PCD cutters. This time consuming operation is obviated by using tool inserts or cutters of the invention.
The layer of ultra-hard abrasive material will generally be a layer of PCD, although under appropriate conditions PCBN may also be used. The layer may also be a layer of diamond produced by chemical vapour deposition, called CVD diamond.
The substrate of the tool insert will generally be a cemented carbide substrate. Such substrates are well known in the art and are generally cemented tungsten carbide substrates.
The protective layer, which may be an extension of the substrate or a separate layer, will also generally be of cemented tungsten carbide, although it may be of a different grade to that of the substrate. In certain instances, the protective layer may be formed of tool steel or other appropriate material suited to milling through steel or other material used for the casing or lining.
Referring to
The recess 46 is filled with diamond particles. Thereafter, the diamond-filled substrate 40 is placed in a reaction capsule and the reaction capsule placed in the reaction zone of a conventional high pressure/high temperature apparatus. The capsule is exposed to conditions of high pressure and temperature suitable to produce a diamond abrasive compact (PCD) 52. Under these conditions the PCD 52 will form and bond to the cemented carbide substrate over the entire surface which defines the recess 46. A cutting edge 54, the primary cutting edge of the tool insert, is defined by the periphery of the PCD 52.
The cemented carbide/PCD body is then removed from the reaction capsule using known techniques. As such the cemented carbide/PCD body forms a precursor of a tool insert of the invention.
To produce a tool insert of the invention, the annular region 48 of the substrate 40 is ground or otherwise removed so as to leave a predetermined depth, indicated by the numeral 56, of tungsten carbide material. This depth of material 56 is selected so as to correspond to the amount of tungsten carbide material required to mill through the wall of a steel casing or lining of a borehole, as described above. To this end, the depth of tungsten carbide 56 provides a protective layer for the primary cutting edge 54 of the PCD 52, and also a secondary cutting edge 58 for milling through the steel casing. Once a window has been milled through the steel casing, ideally the layer 56 should be almost expended so as to expose the cutting edge 54 for drilling into the rockbed.
In some applications, the tungsten carbide substrate 40, whilst having the desired properties for forming the PCD layer 52, may not have the desired properties for milling through a steel casing or lining. In view thereof, the annular protective layer 48 may be replaced by tungsten carbide of a different grade or by another suitable material, such as tool steel, for example. The annular region 48 in such a case could be formed as a ring in situ or, alternatively, could be formed as a separate ring component which is attached to the tool insert. The ring 48 may be attached to the tool insert, which has been machined to accept the ring, by for example brazing, press fitting, shrink fitting or any other convenient method.
As the function of the protective layer is to protect the cutting edge of the PCD and provide a cutting edge for drilling through a steel substrate, it need not be an extension of the substrate of the tool insert as described above. As shown in
A third embodiment of a tool insert of the invention is illustrated in
Referring to
Referring to
As should be evident from the above, a number of different configurations of the tool insert of the invention are possible in order to achieve the desired purpose of protecting the primary cutting edge of a PCD or PCBN layer whilst milling a window through the steel casing or lining of a borehole in a subterranean bedrock, and exposing the PCD or PCBN cutting edge once through the steel casing.
Number | Date | Country | Kind |
---|---|---|---|
2002/8777 | Oct 2002 | ZA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/03892 | 9/12/2003 | WO | 2/28/2006 |