This disclosure relates generally to locks; in particular, this disclosure relates to a lock with a rekeyable lock cylinder.
Lock cylinders that can be rekeyed without removal of the cylinder plug are known. For example, U.S. Pat. No. 7,900,491 describes a rekeyable lock cylinder. These types of locks are highly beneficial to consumers because the locks can be easily rekeyed without use of a locksmith. A separate tool is used to activate a rekey mode of the lock cylinder, and the tool can become lost or broken. Therefore, there is a need for a rekeyable lock that does not require a separate tool for rekeying of the lock.
According to one aspect, this disclosure provides a rekeyable lock cylinder with a cylinder body having a longitudinal axis. A plug assembly is disposed in the cylinder body that is rotatable about the longitudinal axis. The plug assembly includes a plug body, a key follower disposed in the plug body, and a rack corresponding to the key follower. The rack is selectively disengageable from the key follower to facilitate rekeying to a new key. A locking bar is movable between a locked position for blocking rotation of the plug assembly with respect to the cylinder body and an unlocked position to allow rotation of the plug assembly with respect to the cylinder body. A plug face of the plug body is spaced apart from the cylinder body to allow longitudinal movement of the plug body relative to the cylinder body. The plug face is configured to provide means for blocking longitudinal movement of the plug body relative to the cylinder body when the rekeyable lock cylinder is in a locked state and for allowing longitudinal movement of the plug body relative to the cylinder body for performing a rekey operation when the rekeyable lock cylinder is in an unlocked state.
According to another aspect, this disclosure provides a rekeyable lock cylinder with a cylinder body having a longitudinal axis and a groove. A plug assembly is disposed in the cylinder body and is rotatable about the longitudinal axis. The plug assembly includes a plug body, a carrier extending alongside the plug body, a key follower disposed in the plug body, and a rack disposed in the carrier and corresponding to the key follower. The carrier is longitudinally movable relative to the plug body between a set position where the rack is engaged with the key follower and a learn position where the rack is disengaged from the key follower to facilitate rekeying to a new key. A locking bar is movable between a locked position engaged with the groove of the cylinder body for blocking rotation of the plug assembly with respect to the cylinder body and an unlocked position spaced apart from the groove of the cylinder body to allow rotation of the plug assembly with respect to the cylinder body. The rack controls movement of the locking bar between the locked and unlocked positions. A plug face of the plug body is spaced apart from the cylinder body to allow longitudinal movement of the plug body relative to the cylinder body. The carrier moves from the set position to the learn position in response to longitudinal movement of the plug body relative to the cylinder body.
According to another aspect, this disclosure provides a method for rekeying a rekeyable lock cylinder where a cylinder body with a longitudinal axis and a groove is provided. A plug assembly is provided and disposed in the cylinder body. The plug assembly includes a plug body, a carrier extending alongside the plug body, a key follower disposed in the plug body, and a rack disposed in the carrier and corresponding to the key follower. The carrier is longitudinally movable relative to the plug body between a set position where the rack is engaged with the key follower and a learn position where the rack is disengaged from the key follower to facilitate rekeying to a new key. A locking bar is provided and movable between a locked position engaged with the groove of the cylinder body for blocking rotation of the plug assembly with respect to the cylinder body and an unlocked position spaced apart from the groove of the cylinder body to allow rotation of the plug assembly with respect to the cylinder body. The rack controls movement of the locking bar between the locked and unlocked positions. A valid key is inserted into the plug assembly while the plug assembly is in a home position, and the plug assembly is rotated. A plug face of the plug body is moved toward the cylinder body such that the plug assembly moves longitudinally relative to the cylinder body. The plug face of the plug body is moved away from the cylinder body such that the plug assembly moves longitudinally relative to the cylinder body and the carrier moves from the set position to the learn position. The valid key is removed while the carrier is in the learn position and a replacement key is inserted. The plug assembly is rotated to the home position.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments including the best mode of carrying out the disclosure as presently perceived.
The detailed description makes reference to the accompanying figures in which:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates an embodiment of the invention in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
The figures and descriptions provided herein may have been simplified to illustrate aspects that are relevant for a clear understanding of the herein described devices, systems, and methods, while eliminating, for the purpose of clarity, other aspects that may be found in typical devices, systems, and methods. Those of ordinary skill may recognize that other elements and/or operations may be desirable and/or necessary to implement the devices, systems, and methods described herein. Because such elements and operations are well known in the art, and because they do not facilitate a better understanding of the present disclosure, a discussion of such elements and operations may not be provided herein. However, the present disclosure is deemed to inherently include all such elements, variations, and modifications to the described aspects that would be known to those of ordinary skill in the art.
References in the specification to “one embodiment,” “an embodiment,” “an illustrative embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. Additionally, it should be appreciated that items included in a list in the form of “at least one A, B, and C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C). Similarly, items listed in the form of “at least one of A, B, or C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).
In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may not be included or may be combined with other features.
This disclosure relates to a rekeyable lock cylinder that can be rekeyed without removal of the cylinder plug. One example of a rekeyable lock cylinder that can be rekeyed using a separate tool is described in U.S. Pat. No. 7,900,491, which is hereby incorporated by reference. The present lock cylinder can be rekeyed without the use of a separate tool.
An illustrative lock cylinder 10, according to an embodiment of the present disclosure, is illustrated in
The cylinder body 14, as best seen in
The plug assembly 16 includes a plug body 32, a carrier subassembly 34, and a plurality of spring-loaded pins 38 (also called key followers). The plug body 32 illustratively includes a plug face 36, an intermediate portion 40, and a drive portion 42. The plug face 36 defines a keyway opening 44, a channel 48 extending radially outwardly for receiving an anti-drilling ball bearing 50, and a standoff 23 (
The intermediate portion 40 includes a main portion 56 formed as a cylinder section and having a plurality of channels 58 for receiving the spring-loaded pins 38. The channels 58 illustratively extend transversely to the longitudinal axis of the plug body 32. A retaining cap 64 is coupled to the plug body 32 to trap the spring-loaded pins 38 inside the plug body 32. The channels 58 extend partially through the plug body 32, with the sidewalls of the channels open to a planar surface 66. The planar surface 66 illustratively includes a plurality of bullet-shaped, rack-engaging features 68 that block rekeying of the lock cylinder 10 if racks 72 are not aligned to unlock the lock cylinder 10 (e.g., if a valid key is not inserted into the lock cylinder 10).
The carrier subassembly 34 includes a carrier 70, a plurality of racks 72, a locking bar 74, biasing members 78 to urge the locking bar 74 into the locking bar-engaging groove 30 of the cylinder body 14, and a return spring 80. The carrier 70 includes a body 82 in the form of a cylinder section that is complementary to the main portion 56 of the plug body 32, such that the carrier 70 and the main portion 56 combine to form a cylinder that fits inside the cylinder body 14. The carrier 70 includes a curved surface 84 and a flat surface 86. The curved surface 84 includes a locking bar slot 88 and a pair of biasing member-receiving bores 92 for receiving the biasing members 78. In the embodiment shown, the locking bar 74 includes a corresponding pair of recessed areas 96 for receiving the biasing members 78. The flat surface 86 of the carrier 70 includes a plurality of parallel rack-receiving slots 94 extending perpendicular to the longitudinal axis of the carrier 70.
The spring-loaded locking bar 74 is sized and configured to fit in the locking bar slot 88 in the carrier 70. The locking bar 74 illustratively includes a blocking portion 98 that is received in the locking bar-engaging groove 30 in the cylinder body 14 when in the locked position and extends out of the locking bar-engaging groove 30 when in an unlocked position (
The cylinder body 14 is formed to include a recess 21 extending into the front end 22 of body 20 toward the back end 24 as shown in
To rekey the lock cylinder 10, a first (valid) key is inserted into the keyway opening 44 to align the flange 102 of the locking bar 74 with the locking bar-engaging grooves 104 of racks 72 as suggested in
During regular operation of the lock cylinder 10, the carrier 70 is in a set position where the racks 72 are engaged with the spring-loaded pins 38, and the notch 73 of the locking bar 74 is offset from the catch 75 when the plug assembly 16 is rotated with the first key as suggested in
A second key is inserted and rotated, such as counter-clockwise from the position shown in
Illustrative examples of the faucet disclosed herein are provided below. An embodiment of the faucet may include any one or more, and any combination of, the examples described below.
Example 1 is a rekeyable lock cylinder with a cylinder body having a longitudinal axis. A plug assembly is disposed in the cylinder body that is rotatable about the longitudinal axis. The plug assembly includes a plug body, a key follower disposed in the plug body, and a rack corresponding to the key follower. The rack is selectively disengageable from the key follower to facilitate rekeying to a new key. A locking bar is movable between a locked position for blocking rotation of the plug assembly with respect to the cylinder body and an unlocked position to allow rotation of the plug assembly with respect to the cylinder body. A plug face of the plug body is spaced apart from the cylinder body to allow longitudinal movement of the plug body relative to the cylinder body. The plug face is configured to provide means for blocking longitudinal movement of the plug body relative to the cylinder body when the rekeyable lock cylinder is in a locked state and for allowing longitudinal movement of the plug body relative to the cylinder body for performing a rekey operation when the rekeyable lock cylinder is in an unlocked state.
In Example 2, the subject matter of Example 1 is further configured such that the plug face is formed to define a standoff extending from the plug face toward the cylinder body. The standoff is engaged with a front end of the cylinder body to block longitudinal movement of the plug body relative to the cylinder body when the rekeyable lock cylinder is in the locked state. The cylinder body is formed to include a recess in the front end configured to receive the standoff and allow longitudinal movement of the plug body relative to the cylinder body when the rekeyable lock cylinder is in the unlocked state.
In Example 3, the subject matter of Example 1 is further configured such that the rekeyable lock cylinder further includes a spring configured to engage with the cylinder body and plug face to bias the plug face away from the cylinder body.
In Example 4, the subject matter of Example 3 is further configured such that the spring is one of a spring washer, wave spring washer, or coil spring.
In Example 5, the subject matter of Example 1 is further configured such that the locking bar is formed to define a notch and the cylinder body is formed to define a catch. The longitudinal movement of the plug body relative to the cylinder body engages the notch with the catch to block longitudinal movement of the rack relative to the cylinder body.
Example 6 is a rekeyable lock cylinder with a cylinder body having a longitudinal axis and a groove. A plug assembly is disposed in the cylinder body and is rotatable about the longitudinal axis. The plug assembly includes a plug body, a carrier extending alongside the plug body, a key follower disposed in the plug body, and a rack disposed in the carrier and corresponding to the key follower. The carrier is longitudinally movable relative to the plug body between a set position where the rack is engaged with the key follower and a learn position where the rack is disengaged from the key follower to facilitate rekeying to a new key. A locking bar is movable between a locked position engaged with the groove of the cylinder body for blocking rotation of the plug assembly with respect to the cylinder body and an unlocked position spaced apart from the groove of the cylinder body to allow rotation of the plug assembly with respect to the cylinder body. The rack controls movement of the locking bar between the locked and unlocked positions. A plug face of the plug body is spaced apart from the cylinder body to allow longitudinal movement of the plug body relative to the cylinder body. The carrier moves from the set position to the learn position in response to longitudinal movement of the plug body relative to the cylinder body.
In Example 7, the subject matter of Example 6 is further configured such that the plug face is formed to define a standoff extending from the plug face toward the cylinder body. The cylinder body is formed to include a recess. The standoff is rotationally offset from the recess when the lock cylinder is in a locked state to block longitudinal movement of the plug body relative to the cylinder body. The standoff is rotationally aligned with the recess when the lock cylinder is in an unlocked state to allow the standoff to be received in the recess and allow longitudinal movement of the plug body relative to the cylinder body.
In Example 8, the subject matter of Example 7 is further configured such that the rekeyable lock cylinder further includes a spring configured to engage with the cylinder body and plug face to bias the plug face away from the cylinder body.
In Example 9, the subject matter of Example 8 is further configured such that the spring is one of a spring washer, wave spring washer, or coil spring.
In Example 10, the subject matter of Example 6 is further configured such that the locking bar is formed to define a notch and the cylinder body is formed to define a catch. Longitudinal movement of the plug body relative to the cylinder body engages the notch with the catch to block longitudinal movement of the carrier relative to the cylinder body.
Example 11 is a method for rekeying a rekeyable lock cylinder where a cylinder body with a longitudinal axis and a groove is provided. A plug assembly is provided and disposed in the cylinder body. The plug assembly includes a plug body, a carrier extending alongside the plug body, a key follower disposed in the plug body, and a rack disposed in the carrier and corresponding to the key follower. The carrier is longitudinally movable relative to the plug body between a set position where the rack is engaged with the key follower and a learn position where the rack is disengaged from the key follower to facilitate rekeying to a new key. A locking bar is provided and movable between a locked position engaged with the groove of the cylinder body for blocking rotation of the plug assembly with respect to the cylinder body and an unlocked position spaced apart from the groove of the cylinder body to allow rotation of the plug assembly with respect to the cylinder body. The rack controls movement of the locking bar between the locked and unlocked positions. A valid key is inserted into the plug assembly while the plug assembly is in a home position, and the plug assembly is rotated. A plug face of the plug body is moved toward the cylinder body such that the plug assembly moves longitudinally relative to the cylinder body. The plug face of the plug body is moved away from the cylinder body such that the plug assembly moves longitudinally relative to the cylinder body and the carrier moves from the set position to the learn position. The valid key is removed while the carrier is in the learn position and a replacement key is inserted. The plug assembly is rotated to the home position.
In Example 12, the subject matter of Example 11 is further configured such that the plug face is spaced apart from the cylinder body. The plug face is formed to define a standoff extending from the plug face toward the cylinder body. The cylinder body is formed to include a recess. The standoff is rotationally offset from the recess when the lock cylinder is in a locked state to block longitudinal movement of the plug body relative to the cylinder body. The standoff is rotationally aligned with the recess when the lock cylinder is in an unlocked state to allow the standoff to be received in the recess and allow longitudinal movement of the plug body relative to the cylinder body.
In Example 13, the subject matter of Example 11 is further configured such that a spring is configured to engage with the cylinder body and plug face to bias the plug face away from the cylinder body.
In Example 14, the subject matter of Example 13 is further configured such that the spring is one of a spring washer, wave spring washer, or coil spring.
In Example 15, the subject matter of Example 11 is further configured such that the locking bar is formed to define a notch and the cylinder body is formed to define a catch. Longitudinal movement of the plug body relative to the cylinder body engages the notch with the catch to block longitudinal movement of the carrier relative to the cylinder body.
Although the present disclosure has been described with reference to particular means, materials, and embodiments, from the foregoing description, one skilled in the art can easily ascertain the essential characteristics of the invention and various changes and modifications may be made to adapt the various uses and characteristics without departing from the spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 16/659,778, filed Oct. 22, 2019, now U.S. Pat. No. 11,319,726, which claims the benefit of U.S. Provisional Application Ser. No. 62/748,660, filed Oct. 22, 2018, which applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1565556 | Fremon | Dec 1925 | A |
1610224 | Dalboni et al. | Dec 1926 | A |
1845867 | Ellingson | Feb 1932 | A |
1965889 | Fitz | Jul 1934 | A |
2139842 | Miller | Dec 1938 | A |
2194469 | Fremon | Mar 1940 | A |
2232017 | Wilder | Feb 1941 | A |
2370862 | Johnstone | Mar 1943 | A |
2391832 | Johnstone | Dec 1945 | A |
2895323 | Kennedy | Jul 1959 | A |
2977786 | Kendrick et al. | Apr 1961 | A |
3149486 | Russell et al. | Sep 1964 | A |
3183692 | Check | May 1965 | A |
3190093 | Schlage | Jun 1965 | A |
3261189 | Best | Jul 1966 | A |
3293892 | Falk | Dec 1966 | A |
3320781 | Hill | May 1967 | A |
3431757 | Hori | Mar 1969 | A |
3589153 | Hill | Jun 1971 | A |
3667262 | Hill | Jun 1972 | A |
3693384 | Genakis | Sep 1972 | A |
3726116 | Di Motta | Apr 1973 | A |
3728880 | Falk | Apr 1973 | A |
3735612 | Popovici | May 1973 | A |
3754422 | Stackhouse | Aug 1973 | A |
3788111 | Parlier | Jan 1974 | A |
3824818 | Neale | Jul 1974 | A |
3910083 | Burlingame | Oct 1975 | A |
3974671 | Rossetti | Aug 1976 | A |
3990282 | Sorum | Nov 1976 | A |
3999413 | Raymond et al. | Dec 1976 | A |
4015458 | Mercurio | Apr 1977 | A |
4031729 | Gretler | Jun 1977 | A |
4069694 | Raymond et al. | Jan 1978 | A |
4094175 | Pechner | Jun 1978 | A |
4142391 | Paig | Mar 1979 | A |
4195504 | Foshee | Apr 1980 | A |
4320639 | Kleefeldt et al. | Mar 1982 | A |
4372139 | Laake | Feb 1983 | A |
4376382 | Raymond et al. | Mar 1983 | A |
4377940 | Hucknall | Mar 1983 | A |
4380163 | Reder | Apr 1983 | A |
4393673 | Widen | Jul 1983 | A |
4404824 | Hennessy | Sep 1983 | A |
4412437 | Smith | Nov 1983 | A |
4440009 | Smith | Apr 1984 | A |
4689978 | Drummond | Sep 1987 | A |
4712399 | Mattossovich | Dec 1987 | A |
4712401 | Monahan | Dec 1987 | A |
4712402 | Monahan | Dec 1987 | A |
4723427 | Oliver | Feb 1988 | A |
4729231 | Wu | Mar 1988 | A |
4732023 | Shen | Mar 1988 | A |
4747281 | Monahan | May 1988 | A |
4765163 | Trull et al. | Aug 1988 | A |
4794772 | Falk et al. | Jan 1989 | A |
4836002 | Monahan | Jun 1989 | A |
4850210 | Adler et al. | Jul 1989 | A |
4899563 | Martin | Feb 1990 | A |
4909053 | Zipf, III et al. | Mar 1990 | A |
4912953 | Wobig | Apr 1990 | A |
4942749 | Rabinow | Jul 1990 | A |
4966021 | Boag | Oct 1990 | A |
4996856 | Lin et al. | Mar 1991 | A |
5000019 | Foster | Mar 1991 | A |
5010753 | Boris, Jr. | Apr 1991 | A |
5024071 | Shafirkin | Jun 1991 | A |
5038589 | Martin | Aug 1991 | A |
5044180 | Lebrecht | Sep 1991 | A |
5044185 | Green | Sep 1991 | A |
5050412 | Errani | Sep 1991 | A |
5070716 | Whorlow | Dec 1991 | A |
5076081 | Boris, Jr. | Dec 1991 | A |
5088305 | Myers | Feb 1992 | A |
5121619 | Martin | Jun 1992 | A |
5174136 | Thwing | Dec 1992 | A |
5209088 | Vaka | May 1993 | A |
5211044 | Kim | May 1993 | A |
5233850 | Schroeder | Aug 1993 | A |
5291767 | Weindorf, Jr. et al. | Mar 1994 | A |
5325690 | Adler et al. | Jul 1994 | A |
5428978 | Tsukano | Jul 1995 | A |
5431034 | Fann et al. | Jul 1995 | A |
5479801 | Keller | Jan 1996 | A |
5507162 | Chhatwal | Apr 1996 | A |
5540071 | Reikher | Jul 1996 | A |
5640865 | Widen | Jun 1997 | A |
5666835 | Keller | Sep 1997 | A |
5704234 | Resch | Jan 1998 | A |
5718136 | Aldieri | Feb 1998 | A |
5752400 | Kim | May 1998 | A |
5765417 | Bolton | Jun 1998 | A |
5791181 | Sperber et al. | Aug 1998 | A |
5884512 | Wayne | Mar 1999 | A |
5921122 | Lin | Jul 1999 | A |
5956986 | Vonlanthen | Sep 1999 | A |
5970760 | Shen | Oct 1999 | A |
5979200 | Cliff | Nov 1999 | A |
6029484 | Jetton | Feb 2000 | A |
6047577 | Klimas | Apr 2000 | A |
6079240 | Shvarts | Jun 2000 | A |
6119495 | Loreti | Sep 2000 | A |
6134928 | Kang | Oct 2000 | A |
6142717 | Staiger | Nov 2000 | A |
6295850 | Anderson | Oct 2001 | B1 |
6425274 | Laitala et al. | Jul 2002 | B1 |
6516643 | Olshausen | Feb 2003 | B1 |
6523378 | Kuo | Feb 2003 | B2 |
6523382 | Dimig et al. | Feb 2003 | B1 |
6532782 | Chiu | Mar 2003 | B2 |
6564601 | Hyatt, Jr. | May 2003 | B2 |
6860131 | Armstrong et al. | Mar 2005 | B2 |
6862909 | Armstrong et al. | Mar 2005 | B2 |
6871520 | Armstrong et al. | Mar 2005 | B2 |
6951123 | Chong | Oct 2005 | B2 |
6959569 | Strader et al. | Nov 2005 | B2 |
6973813 | Erdely | Dec 2005 | B2 |
7007528 | Chong et al. | Mar 2006 | B2 |
7059160 | Keller | Jun 2006 | B2 |
7114357 | Armstrong et al. | Oct 2006 | B2 |
7117701 | Armstrong et al. | Oct 2006 | B2 |
7213429 | Armstrong et al. | May 2007 | B2 |
7234331 | Armstrong et al. | Jun 2007 | B2 |
7308811 | Armstrong et al. | Dec 2007 | B2 |
7322219 | Armstrong et al. | Jun 2008 | B2 |
7428836 | Yang et al. | Sep 2008 | B2 |
7434431 | Armstrong et al. | Oct 2008 | B2 |
7448239 | Huang et al. | Nov 2008 | B1 |
7448240 | Huang et al. | Nov 2008 | B1 |
7526935 | Huang et al. | May 2009 | B2 |
7565825 | Wheatland et al. | Jul 2009 | B2 |
7634931 | Segien et al. | Dec 2009 | B2 |
7836739 | Huang et al. | Nov 2010 | B2 |
7874191 | Chiang et al. | Jan 2011 | B2 |
7878036 | Armstrong et al. | Feb 2011 | B2 |
7900491 | Chong | Mar 2011 | B2 |
8033150 | Armstrong et al. | Oct 2011 | B2 |
8099988 | Wheatland | Jan 2012 | B1 |
8291735 | Damikolas | Oct 2012 | B1 |
8347678 | Chong | Jan 2013 | B2 |
8408080 | Damikolas | Apr 2013 | B2 |
8656747 | Armstrong et al. | Feb 2014 | B2 |
8739587 | Chen | Jun 2014 | B2 |
8881567 | Chong et al. | Nov 2014 | B2 |
RE45627 | Chong et al. | Jul 2015 | E |
9127479 | Romero et al. | Sep 2015 | B2 |
9359791 | Zhang | Jun 2016 | B2 |
9657499 | Emory | May 2017 | B2 |
9988828 | Emory | Jun 2018 | B2 |
10435915 | Zhang | Oct 2019 | B2 |
11319726 | Rufang | May 2022 | B2 |
20030037582 | Edwards, Jr. et al. | Feb 2003 | A1 |
20030084692 | Herdman | May 2003 | A1 |
20030089149 | Suzuki et al. | May 2003 | A1 |
20030154753 | Dimig et al. | Aug 2003 | A1 |
20040069030 | Takadama | Apr 2004 | A1 |
20050132766 | Milo | Jun 2005 | A1 |
20050229656 | Brown et al. | Oct 2005 | A1 |
20060117822 | Boesel et al. | Jun 2006 | A1 |
20080314106 | Mathachan | Dec 2008 | A1 |
20100050717 | Chiang et al. | Mar 2010 | A1 |
20160369527 | Farag et al. | Dec 2016 | A1 |
20200040605 | Farag | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2333329 | Dec 1999 | CA |
19544840 | Jun 1997 | DE |
0210037 | Jan 1987 | EP |
0526904 | May 1996 | EP |
0872615 | Oct 1998 | EP |
990987 | May 1965 | GB |
1554877 | Oct 1979 | GB |
2001234648 | Aug 2001 | JP |
H07197705 | May 2003 | JP |
1997036072 | Oct 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20220316238 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
62748660 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16659778 | Oct 2019 | US |
Child | 17729381 | US |