The present disclosure relates to a tool-to-carrier cradle assembly for attachment of the tool to a carrier.
This section provides background information related to the present disclosure which is not necessarily prior art.
Tool-to-carrier cradles are used to mount robust hydraulic tools to a carrier or prime mover. Mounting tools like a hydraulic breaker requires the tool-to-carrier cradle to be able to counteract significant forces. In order to provide the necessary robustness, existing tool-to-carrier cradle products are generally expensive to manufacture. For example, such tool-to-carrier cradles typically require significant material in the form of relatively thick metal plates. Alternatively or additionally, such tool-to-carrier cradles typically require providing multiple horizontal bends at or close to 90 degrees in the metal plates. Additionally, some require multiple tool-to-carrier cradles to accommodate different tool angles, further adding to the costs. The present disclosure provides a tool-to-carrier cradle assembly that eliminates one or more of these generally seen problems.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to an aspect of the present disclosure, a tool-to-carrier cradle assembly is provided for coupling a tool to a carrier having upper and lower carrier couplings. The tool-to-carrier cradle includes a backplate; a pair of forwardly extending ears; a first plate laterally coupled to the first ear; and a second plate laterally coupled to the second ear. The backplate has a first side and a second side. The ears extend from the first side of the backplate. The second side of the backplate includes upper and lower backplate couplings coupleable to the upper and lower carrier couplings. The ears each have a proximal portion, a distal portion, and an angle portion therebetween. The proximal portion of each ear is coupled to the first side of the backplate. The proximal portion of the first ear is substantially parallel and spaced laterally from the proximal portion of the second ear at a first distance. The distal portion of the first ear is substantially parallel and spaced laterally from the distal portion of the second ear at a second distance. The first distance between the proximal portions is larger than the second distance between the distal portions. The angle portion has a first end and a second end. The first end of each angle portion is coupled to the corresponding proximal portion. The second end of each angle portion is coupled to the corresponding distal portion.
According to another aspect of the present disclosure, a tool and cradle assembly is provide, which is coupleable to a carrier having upper and lower carrier couplings. The tool and cradle assembly includes a pair of sideplates having a proximal end and a distal end; a backplate having a first and second side; a pair of ears; a first plate laterally coupled to the first ear; and a second plate laterally coupled to the second ear. The sideplates are mounted to opposite sides of the tool. The proximal end of each sideplate includes a plurality of boom-pin apertures. The distal end of the sideplate includes a pivot aperture. The second side of the backplate includes upper and lower backplate couplings coupleable to the upper and lower carrier couplings. The ears each have a proximal portion, a distal portion, and an angle portion therebetween. The proximal portion of each ear is coupled to the first side of the backplate and includes a plurality of boom-pin apertures. The proximal portion of the first ear is substantially parallel and spaced laterally from the proximal portion of the second ear at a first distance. The distal portion of the first ear is substantially parallel and spaced laterally from the distal portion of the second ear at a second distance. The distal portion of each ear includes a pivot bushing and pin positioned to couple to the pivot aperture of the corresponding sideplate. The first distance between the proximal portions is larger than the second distance between the distal portions. The angle portion has a first end and a second end. The first end of each angle portion is coupled to the corresponding proximal portion. The second end of each angle portion is coupled to the corresponding distal portion.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
In the illustrated example, the cradle assembly 20 generally includes a backplate 30, a pair of vertical supports or ears 28, and a plurality of plates, gussets, or lateral supports 32. The backplate 30 has a front, forward, or first side 82 and a back, rear, or second side 84. As seen in
In the illustrated example, the upper couplings 88 of the carrier 26 include protrusions, projections, or flanges 118. The upper backplate couplings 74 of the cradle assembly 20 include corresponding lips 120 that form pockets for receipt of the protrusions 118 of the upper couplings 88 of the carrier 26. The lower couplings 90 of the carrier 26 include extending protrusions, projections or flanges 126 that extend rearward, backwards, or in a first direction. These lower couplings 90 of the carrier 26 can include retracting and extending pins, fasteners, or clasps 122 extending from the flanges 126. The lower backplate couplings 76 of the cradle assembly 20 can include corresponding slots, channels, or openings 124 in a protrusion, projection, or flange 132 that extends rearward, backwards, or in a first direction into which the pins 122 can be received.
As seen in
The proximal portion 36 of each ear 28 can be coupled to the front side 82 of the backplate 30. The proximal portions 36 of the ears 28 can be substantially parallel with one another. In other words, the proximal portion 36 of a left or first ear 28 can be substantially parallel with the proximal portion 36 of a right or second ear 28. The proximal portions 36 of the ears 28 can be laterally spaced with respect to one another. Thus, the proximal portion 36 of the left ear 28 can be spaced laterally from the proximal portion 36 of the right ear 28 at a proximal or first distance 44. In addition, the proximal portion 36 of each ear 28 can have a plurality of boom-pin apertures, holes, or openings 56. Bushings 58 can be permanently or selectively coupled to each boom-pin aperture 56. The boom-pin apertures 56 of the left ear 28 are correspondingly positioned with the boom-pin apertures 56 of the right ear 28.
Like the proximal portions 36, the distal portions 40 of the ears 28 can be substantially parallel with one another. In other words, the distal portion 40 of the left ear 28 can be substantially parallel with the distal portion 40 of the right ear 28. The distal portions 40 of the ears 28 can be laterally spaced with respect to one another. Thus, the distal portion 40 of the left ear 28 can be spaced laterally from the distal portion 40 of the right ear at a second distance 46. The second distance 46 between the corresponding distal portions 40 of the ears 28 can be smaller than the first distance 44 between the corresponding proximal portions 36 of the ears 28. The distal portion 40 of each ear 28 can have a pivot aperture, hole, or opening 66 and bushings 68 can be permanently or selectively coupled to each pivot aperture 66.
The angle portions 38 of the ears 28 can each be sloped inwards towards the corresponding angle portion 38. In other words, the angle portion 38 of the left ear 28 can be sloped inwards towards the angle portion 38 of the right ear 28, and conversely, the angle portion 38 of the right ear 28 can be sloped inwards towards the angle portion 38 of the left ear 28. In some cases, the angle portions 38 can be sloped at an inside or interior angle, relative to the corresponding proximal portions 36, that is from about 10 degrees to about 80 degrees. In some other cases, the angle portions 38 can be sloped at an inside or interior angle, relative to the corresponding proximal portions 36, that is from about 25 degrees to about 50 degrees. In some other cases, the angle portion 38 can be sloped at an inside or interior angle, relative to the corresponding proximal portions 36, that is from about 55 degrees to about 75 degrees.
As mentioned above, each ear 28 of the illustrated example of the cradle assembly 20 is formed from a relatively thin one-piece metal sheet. Thus, each ear 28 can have a proximal, rear, or first bend 50 in the one-piece metal sheet extending along a corresponding first axis wherein the proximal portion 36 and the angle portion 38 meet. Similarly, each ear 28 can have a distal, forward, or second bend 52 in the one-piece metal sheet extending along a corresponding second axis where the angle portion 38 and the distal portion 40 meet. As in the illustrated example, each of the first and second bend 50 and 52, respectively, and their corresponding first and second axes can extend, or be aligned, substantially parallel with each other and in a substantially vertical direction. The first bends 50 of the angle portions 38 can be positioned at the first distance 44. The second ends 52 of the angle portions 38 can be positioned at the second distance 46.
The plates, gussets, or lateral supports 32 are laterally coupled to the ears 28. Each of the gussets 32 can be similarly formed of a one-piece metal sheet. Each gusset 32 can be a planar member that is positioned to extend outwardly from, and substantially perpendicular to, the outer face of the attached ear 28. In the illustrated example, two gussets 32 are coupled to each ear 28. In other examples of course, additional of fewer gussets 32 can be coupled to the ears 28.
Each gusset 32 can include a proximal, rear, or first end 34 and a distal, forward, or second end 33 and an inner edge 35 extending therebetween. Each gusset 32 can be welded to the front side 82 of the backplate 30 along a proximal edge of the proximal end 34 of the gusset 32. The inner edge 35 of each gusset 32 can have a profile that matches the outer surface of the adjacent ear 28. The inner edge 35 can be welded to the adjacent ear 28 along substantially its entire length.
As in the illustrated example, the proximal end 34 of each of the gussets 32 can be aligned with, or positioned directly opposite, one of the upper or lower couplings 74, 76 of the backplate 30. Thus, when coupled to the carrier 26, the proximal ends 34 of each gusset 32 can be aligned with, or positioned directly opposite to, one of the upper or lower couplings 88, 90 of the carrier 26.
The distal end 33 of each gusset 32 can be positioned or can be extend adjacent or beside the corresponding pivot aperture 66 of the ear 28. As in the illustrated example, each pivot aperture 66 can be positioned between the distal ends 33 of two gussets 32. Thus, each gusset 32 can extend alongside the pivot aperture 66 and alongside or past each of the boom-pin aperture 56 of the ear 28 to which the gusset 32 is coupled. The gusset 32 pairs of each ear 28 can be spaced closer together at their distal ends 33 and spaced farther apart at their proximal ends 34. In other words, these gusset 32 pairs can form a V-shaped configuration.
As seen in
The sideplates 100 can be positioned on opposite sides of the tool 22. Each sideplate 100 can include a proximal, rear, or first portion or end 128 and a distal, forward, or second portion or end 130. The proximal ends 128 of the sideplates 100 can include a reinforcement 108. The reinforcement 108 can include a flange portion 114 and boom-pin aperture portions 116 that surround a plurality of boom-pin apertures 110. Bushings 112 can be permanently or selectively coupled to the boom-pin apertures 110. The distal portion 130 of the sideplates 100 can include a pivot aperture 106. The pivot apertures 106 of the sideplates 100 can be positioned substantially at center-mass of the tool 22.
The boom-pin apertures 110 of the sideplates 100 can be positioned to selectively correspond with the boom-pin apertures 56 of the ears 28. A boom-pin 60 can be coupled to the corresponding boom-pin apertures 56 of the ears 28. The boom-pin 60 can be coupled to corresponding boom-pin apertures 110 of the sideplates 100. For example, as seen in
The pivot apertures 106 of the sideplates 100 can be positioned to correspond with the pivot apertures 66 of the ears 28. As seen in
The difference between the first distance 44 and the second distance 46 can allow the distance between the tool 22 and the tool-to-carrier cradle assembly 20 to be reduced. The reduced distance between the tool 22 and the tool-to-carrier cradle assembly 20 can allow the overall size of the tool-to-carrier cradle 20 to be reduced. The reduced size of the tool-to-carrier cradle 20 can improve the usability and flexibility of the carrier 26 in combination with the tool-to-carrier cradle assembly 20. The present tool-to-carrier cradle assembly 20 can also be lighter.
Although the terms, first, second, third, etc. can be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms can be only used to distinguish one element component, region, layer, or section from another region, layer, or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” “vertical,” “horizontal” and the like, can be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms can be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, the terms “horizontal” and “vertical” are used in reference to the orientation of the tool-to-carrier cradle seen best in
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same can also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2322115 | Cox | Jun 1943 | A |
2688233 | Craig | Sep 1954 | A |
2774155 | Hipp | Dec 1956 | A |
2983496 | Grant | May 1961 | A |
3235013 | Kirkpatrick, Jr. | Feb 1966 | A |
3427735 | Martin | Feb 1969 | A |
3672521 | Bauer et al. | Jun 1972 | A |
4199033 | Van Gundy, Jr. | Apr 1980 | A |
4333250 | Henderson | Jun 1982 | A |
4670983 | Ramun | Jun 1987 | A |
4836741 | St. Louis | Jun 1989 | A |
4919212 | McClure | Apr 1990 | A |
4966240 | Aikawa | Oct 1990 | A |
5088882 | Lovitt, Jr. | Feb 1992 | A |
5172499 | Griffin | Dec 1992 | A |
5183316 | Ottestad | Feb 1993 | A |
5603382 | McIver | Feb 1997 | A |
D395436 | Hagenbuch | Jun 1998 | S |
6041528 | Broach | Mar 2000 | A |
6163989 | Kaczmarski | Dec 2000 | A |
6301811 | Gilmore, Jr. | Oct 2001 | B1 |
6499934 | Kaczmarski et al. | Dec 2002 | B1 |
6663338 | Gregory, Jr. | Dec 2003 | B1 |
6938514 | Crane | Sep 2005 | B1 |
7108475 | Gustafson | Sep 2006 | B1 |
7628222 | Yoshimura | Dec 2009 | B2 |
7661210 | Shepherd | Feb 2010 | B2 |
8024875 | Wetzel | Sep 2011 | B2 |
D697946 | Healey | Jan 2014 | S |
D707731 | Healey | Jun 2014 | S |
9004845 | Bernier | Apr 2015 | B2 |
9086241 | Bystedt | Jul 2015 | B2 |
9366005 | Hiragakiuchi | Jun 2016 | B2 |
9809945 | Middleton | Nov 2017 | B1 |
20040040726 | Foltz | Mar 2004 | A1 |
20040168814 | Stewart | Sep 2004 | A1 |
20060070759 | Nesseth | Apr 2006 | A1 |
20060157605 | Ramun | Jul 2006 | A1 |
20060254415 | Miyazaki | Nov 2006 | A1 |
20070134081 | Seabolt | Jun 2007 | A1 |
20080141566 | Esser | Jun 2008 | A1 |
20080199293 | Santele | Aug 2008 | A1 |
20090223096 | Wimmer | Sep 2009 | A1 |
20140317967 | Parker | Oct 2014 | A1 |
20150139716 | Schmidt | May 2015 | A1 |
20160356339 | Park | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2103523 | Feb 1983 | GB |
Entry |
---|
Stanley MB656 Mounted Hydraulic Breaker User Manual, Safety, Operation and Maintenance, Jan. 2017 Ver. 12, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MB656%20User%20Manual%201-2017%20V12. |
Stanley MB556 Mounted Hydraulic Breaker User Manual, Safety, Operation and Maintenance, Jun. 2016 Ver. 13, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MB556%20User%20Manual%206-2016%20V13. |
Stanley MB05 Mounted Hydraulic Breaker User Manual, Safety, Operation and Maintenance, Aug. 2016, Ver. 16, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MB05%20User%20Manual%208-2016%20V16_0. |
Stanley MB05 Mounted Breaker, Specification Sheet, downloaded from the Internet Feb. 6, 2017, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/mb05-specsheet. |
Stanley MB Series Specifications, Mounted Carrier Attachments V2, downloaded from the Internet Feb. 6, 2017, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MB%20Series%20Sheet%20v2. |
Stanley MBX15 Hydraulic Mounted Breaker User Manual, May 2016, Ver. 8, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MBX15%20User%20Manual%20English%205-2016%20V8. |
Stanley MB256 Mounted Hydraulic Breaker User Manual, Safety, Operation and Maintenance, Oct. 2016, Ver. 38, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MB256%20User%20Manual%2010-2016%20V38. |
Stanley MB156 Mounted Hydraulic Breaker User Manual, Safety, Operation and Maintenance, Jun. 2016, Ver. 17, http://www.stanleyhydraulics.com/sites/stanleyhydraulic.com/files/pdf/MB156%20User%20Manual%206-2016%20v17. |
International Search Report and Written Opinion of the International Searching Authority in corresponding International Application No. PCT/US2018/015959 dated May 15, 2018. |
Number | Date | Country | |
---|---|---|---|
20180216313 A1 | Aug 2018 | US |