Typically, metal working operations are performed using a cutting insert of a hard metal mounted to a toolholder. The toolholder can be removably attached to a base member that is part of a machine, such as, for example, a lathe or a milling machine. Various arrangements for removably attaching and/or adjusting parameters of the toolholder in relation to the base member, such as, for example, a clamping unit with lock rod and spring pack are generally known.
Toolholder assemblies utilize spring packs in order to provide clamping force, as well as incorporate compliance into the clamping unit. The spring packs are desired to have high stiffness to provide high clamping force. In addition, a certain amount of compliance is required to compensate for the geometric tolerance of standard tools and ensure proper clamping. The problem with spring packs is that they require a lot of space to mount the clamping unit inside the machine tool.
Thus, it would be desirable to provide an improved toolholder assembly that overcomes limitations, shortcomings and/or disadvantages of conventional toolholder assemblies.
The problem of the use of spring packs in clamping units is solved by providing one or more flexure features in the design of the canister, thereby completely eliminating the spring pack from the clamping unit. As the result, the size of the clamping unit can be greatly reduced.
In one aspect, a toolholder assembly includes a toolholder having a rearwardly facing toolholder shank and an axial rearward end with an internal bore intersecting the axial rearward end, the toolholder shank having an outer surface and at least one locking aperture that extends from the outer surface to the internal bore. The toolholder assembly further includes a base member having a bore configured for receiving the toolholder shank; a lock rod with an axial forward end and an axial rearward end; and at least one locking member in communication with the axial forward end of the lock rod and movably positioned at least partially in the at least one locking passageway and/or the at least one locking aperture. The toolholder assembly further includes a flexible canister adapted to be received in the bore of the base member. The flexible canister has an outer surface and a canister bore that extends longitudinally into the flexible canister. The flexible canister has at least one locking passageway that extends from the outer surface of the flexible canister to the canister bore. The at least one locking passageway is in communication with the at least one locking aperture of the toolholder shank when the toolholder assembly is assembled. The flexible canister includes at least one flexible feature that reduces a stiffness of the flexible canister.
In another aspect, a flexible canister is adapted to be received in a bore of a base member of a toolholder assembly. The flexible canister has an outer surface and a canister bore that extends longitudinally into the flexible canister. The flexible canister has at least one locking passageway that extends from the outer surface of the flexible canister to the canister bore. The at least one locking passageway is in communication with at least one locking aperture of a toolholder shank when the toolholder assembly is assembled. The flexible canister includes at least one flexible feature that increases a flexibility of the flexible canister.
In yet another aspect, a method of reducing stiffness of a canister for a toolholder assembly, comprising:
While various embodiments of the invention are illustrated, the particular embodiments shown should not be construed to limit the claims. It is anticipated that various changes and modifications may be made without departing from the scope of this invention.
Below are illustrations and explanations for a version of a toolholder used in turning operations, milling operations, and the like, that is right, left or neutral handed. However, it is noted that the cutting tool may be configured to suit any specific application, such as reaming, end milling, and the like, and is not limited only to the example in the illustrations.
The description herein of specific applications should not be a limitation on the scope and extent of the use of the cutting tool.
Directional phrases used herein, such as, for example, left, right, front, back, top, bottom and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein. Identical parts are provided with the same reference number in all drawings.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about”, “approximately”, and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
Throughout the text and the claims, use of the word “about” in relation to a range of values (e.g., “about 22 to 35 wt %”) is intended to modify both the high and low values recited, and reflects the penumbra of variation associated with measurement, significant figures, and interchangeability, all as understood by a person having ordinary skill in the art to which this invention pertains.
For purposes of this specification (other than in the operating examples), unless otherwise indicated, all numbers expressing quantities and ranges of ingredients, process conditions, etc., are to be understood as modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that can vary depending upon the desired results sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Further, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” are intended to include plural referents, unless expressly and unequivocally limited to one referent.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements including that found in the measuring instrument. Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between and including the recited minimum value of 1 and the recited maximum value of 10, i.e., a range having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. Because the disclosed numerical ranges are continuous, they include every value between the minimum and maximum values. Unless expressly indicated otherwise, the various numerical ranges specified in this application are approximations.
In the following specification and the claims, a number of terms are referenced that have the following meanings.
The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
As used herein, “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
As used herein, “proximate” means closest in relation; immediate. For example, “proximate” may by synonymous with near, close, closest, nearest, next door, adjacent, adjoining, abutting, contiguous, and the like.
As used herein, the term “number” shall be used to refer to any non-zero quantity (i.e., one or any quantity greater than one).
As used herein, the term “slot” shall be used to refer to 1: any narrow opening or groove; and/or 2) any narrow passage or enclosure.
Referring to
Referring to
The lock rod 22 may include one or more grooves 64 that extend generally circumferentially about the lock rod 22. Each groove 64 is configured to cooperate with a stop pin 62 to generally provide a means for stopping and/or limiting rotation of the lock rod 22 between the locked and unlocked positions.
Generally, counterclockwise rotation of the lock rod 22 from the
In addition,
As shown in
In the illustrated embodiment, the flexure feature 50 comprises at least one slot proximate a respective locking passageway 38 that extends inward from the outer surface 34 of the canister 20 toward the canister bore 36. Although not shown in
The stiffness of the flexible canister 20 of the invention was calculated by measuring the location of a lock rod, similar to lock rod 22, at nominal and maximum ISO 26622 suggested clamping forces before and after adding the slot 50 to the canister 20. A reference of the locking passageway 38 having a diameter of 9.075 mm was used in the measurement. The design parameters for the slot 50 were as follows:
The stiffness of the canister 20 with no slot was found to be 8.28E+06 N/m. The stiffness of the canister 20 with the slot 50 was found to be 5.87E+06 N/m, which is about a 30% reduction in stiffness, as compared to the canister with no slot.
It should be noted that the flexibility of the canister 20 can be achieved though many other designs for the flexibility feature 50. As mentioned above, the flange 48 of the canister 20 is the seating surface within the base member 16 of the toolholder assembly 10. When the tool is clamped, the canister 20 is pulled against the base member 16, which then causes the flexible feature(s) 50 to elastically deform. Flexible features that allow the canister 20 to flex include, for example, a flexible member (not shown) around the outer surface 34 of the canister 20, spring type designs, and slots within, above, or below the flange 48. These flexible features can be created by any combination of relief cuts, a complex hole cut out of the back of the canister 20, undercuts above and below the flange 48, grooves above and below the flange 48, wave like features within the flange 48, and slots above or below the flange 48. A large relief can be formed around the outer diameter of the canister directly above the flange with a complex hole feature in the bottom center of the canister. The combination of these flexible features creates a flexible member around the entire outer surface 34, and their design serves to relieve and distribute stress throughout the flexible member during flexing. In addition, one or more slots can be formed above one or more bores 38 that follow the contour of the bore 38 and act as compression springs. The slots above the bore 38 in conjunction with the flexible member in the flange 48 to allow for more elastic deformation with less restrictive tolerances in each respective feature.
As described above, the inventive idea presented here is an innovative design that the flexibility of the canister 20 can be achieved by multiple features within, below, and above the flange 48 (seating face of canister in clamping unit assembly) that are intended to elastically deform. In addition, slotted features can be added above one or more bores 38 in order to compress and provide additional compliance.
The patents and publications referred to herein are hereby incorporated by reference.
Having described presently preferred embodiments the invention may be otherwise embodied within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3856428 | Eversole | Dec 1974 | A |
4710077 | Ramunas | Dec 1987 | A |
4747735 | Erickson et al. | May 1988 | A |
4890523 | Satran | Jan 1990 | A |
4932295 | Erickson | Jun 1990 | A |
4981057 | von Haas et al. | Jan 1991 | A |
5054344 | Erickson et al. | Oct 1991 | A |
5169270 | Erickson | Dec 1992 | A |
5173017 | Oshnock et al. | Dec 1992 | A |
5452631 | Erickson | Sep 1995 | A |
5466102 | Erickson | Nov 1995 | A |
5599146 | Scheer | Feb 1997 | A |
5697740 | von Haas et al. | Dec 1997 | A |
5709510 | Scheer | Jan 1998 | A |
6000306 | Erickson | Dec 1999 | A |
6003416 | Ando | Dec 1999 | A |
6280126 | Slocum | Aug 2001 | B1 |
6343903 | Huang | Feb 2002 | B1 |
6370995 | Skoog | Apr 2002 | B1 |
7610834 | Erickson | Nov 2009 | B2 |
8449228 | Guy | May 2013 | B2 |
10022806 | Langbein et al. | Jul 2018 | B2 |
20030024131 | Erickson | Feb 2003 | A1 |
20040096285 | Johne | May 2004 | A1 |
20090235790 | Erickson | Sep 2009 | A1 |
20100272523 | Nagaya | Oct 2010 | A1 |
20110058908 | Schaefer | Mar 2011 | A1 |
20110067536 | Erickson | Mar 2011 | A1 |
20120292863 | Craig | Nov 2012 | A1 |
20150086282 | Zeeb | Mar 2015 | A1 |
20180297124 | Bookheimer et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
7632521 | Oct 1982 | DE |
19818148 | Oct 1999 | DE |
1050359 | Nov 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20200384543 A1 | Dec 2020 | US |