This application claims the benefit of GB Application No. GB1506604.6, filed Apr. 19, 2015. This application is herein incorporated by reference in its entirety for all purposes.
The invention relates to a tooling system for and method of manufacturing decorating nozzles for example for use in the food industry.
Decorating nozzles are used in the food industry for dispensing semi-liquid foodstuffs into containers to leave a decorative appearance on the upper surface. A decorating nozzle typically comprises a concave top plate having a central opening to which a connector is attached for connection to the supply line for the material to be dispensed. The top plate is connected to a bottom plate via a surrounding mounting ring. The bottom plate is typically flat and has a plurality of dispensing tubes depending downwardly therefrom and opening therethrough, the tubes usually being provided with a decoratively-shaped opening at the lower end to form the material dispensed therethrough. For example, the openings may be of generally star-shaped configuration.
Different materials and processes require different-sized nozzles and different configurations of dispensing tubes, for example a large number of small-diameter tubes or a smaller number of larger-diameter tubes. Forming the components of the nozzle as pressings is very costly, because a press tool has to be manufactured for each different diameter of nozzle and the number of any one size of nozzle required is not high. It is therefore an object of the invention to provide a more economical and flexible method of manufacture of the nozzles.
These and other objects of the invention are achieved in one aspect of the invention by a tool set for use in forming a decorating nozzle, which comprises a tool-mounting plate mountable on the headstock of a metalworking lathe, the tool-mounting plate having a face with a plurality of concentric grooves provided therein. A first circular forming tool has on a first face an up-standing ring which is an interference fit in one of said concentric grooves in the face of the tool-mounting plate, a first radially-extending formation on the face of the tool-mounting plate co-operating with a second radially-extending formation on the first face of the tool to prevent relative rotation of the tool and tool-mounting plate when fitted together, the tool having a second face opposite to the first face, the second face having a convex formation thereon and a centrally-located detachable mounting for receiving and securing a circular sheet metal workpiece having a mounting hole at the center thereof. A freely-rotatable roller is carried on a spindle and is co-operable with the first circular tool to engage and deform the workpiece into conformity with first tool as the first tool and the workpiece are rotated.
The tool set may further comprise at least one further forming tool mountable on the tool-mounting plate in place of the first tool for the conduct of successive deforming operations to achieve successively greater deformation of the workpiece. The tool set may further comprise at least one additional tool co-operable with said at least one further forming tool to clamp a workpiece for further forming operations. The at least one additional tool can be mounted on a rotating center in the tail stock of a metalworking lathe.
The invention also provides a method of making a nozzle top for a decorating nozzle, comprising:
a. cutting a disc of sheet metal;
b. providing a first convex forming tool mounted for rotation about an axis through the center of the tool;
c. mounting the disc on said forming tool for rotation therewith;
d. rotating the forming tool and disc;
e. pressing a roller on to the disc adjacent to the center of the disc and tangentially to the rotating surface thereof; and
f. progressively moving the roller outwardly while continuing to press the roller on to the disc to deform the disc to adopt the shape of the convex forming tool.
The method may further comprise repeating steps c. to f. using a second convex forming tool having a greater convex depth than said first forming tool to increase the convex depth of the nozzle top. The method may then further comprise repeating steps a. to f. using a third convex forming tool having a greater convex depth than said second forming tool to further increase the convex depth of the nozzle top.
A preferred method further comprises a finishing step before securing the nozzle top to a nozzle bottom plate, said finishing step comprising:
g. locating the nozzle top between a fourth forming tool and a fifth forming tool, the fourth and fifth forming tools being of circular plan and having opposed end faces respectively configured to hold the nozzle top between them with a portion of the nozzle top extending beyond the fourth and fifth forming tools, the fourth forming tool being provided with a frusto-conical surface on the periphery thereof extending outwardly from said end face to an outer cylindrical surface;
h. optionally mounting a roller at an angle such that a rolling surface of the roller conforms with the frusto-conical surface and moving said roller on to the said portion of the nozzle top to deform it into conformity with the frusto-conical surface;
i. mounting said roller at an angle such that the rolling surface thereof conforms with the outer cylindrical surface of the fourth tool; and
j. progressively moving said roller away from said frusto-conical surface to deform the remainder of the portion of the nozzle top into conformity with the outer cylindrical surface.
The invention may further provide a method of forming a nozzle bottom plate for a decorating nozzle, comprising:
k. cutting a disc of sheet metal having a thickness n and a diameter m;
l. providing a sixth forming tool having a cylindrical shape with a diameter less than m and mounting the tool for rotation about an axis through the center of the cylinder;
m. providing a seventh forming tool having a cylindrical shape with a diameter approximately 2n greater than that of the sixth forming tool and mounting the tool for rotation about an axis through the center of the cylinder, said axis being aligned with the axis of the sixth forming tool;
n. locating the disc of sheet metal on the face of the sixth forming tool and bringing the seventh forming tool into contact therewith to hold the disc firmly between the sixth and seventh forming tools;
o. mounting a roller with the axis of rotation thereof parallel to the axis of the sixth and seventh tools and gradually moving the roller axially in contact with the disc from the seventh forming tool to-wards the sixth forming tool to deform a peripheral portion of the disc into engagement with the cylindrical surface of the sixth forming tool; and
p. separating the sixth and seventh forming tools and removing the nozzle bottom plate from between them.
The present invention has several advantages over current manufacturing methods:
nozzle tooling costs are reduced;
the invention allows the manufacture of a wider range of nozzle sizes;
the wider range of nozzle sizes means that when nozzles are placed next to each other, nozzle dead area issue is reduced;
a greater use of conveyor, indexing track, rotary processor or factory space will be allowed.
The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been selected principally for readability and instructional purposes, and not to limit in any way the scope of the inventive subject matter. The invention is susceptible of many embodiments. What follows is illustrative, but not exhaustive, of the scope of the invention.
The manufacturing procedures for making a batch of 10 nozzles in diameter range of 4-inch 6-inch 8-inch 10-inch & 12-inch giving a total of 100 components will be described.
Referring first to
Stage 1 Nozzle Top Forming
In use, referring to
The 90 degree roller 13 is set up on the center line and the lathe's compound slide is then set to the same angle as that of the frusto-conical portion of the first forming. The roller is suitably a Timken double row ball bearing with inner and outer races. The compound slide has to be aligned with the angle of the cone to maintain the correct pressure. A DTI gauge is placed on the slide and is moved along the cone, the slide angle being adjusted accordingly.
The roller 13 is set with a feeler gauge at about 95% of the material gauge in this case 18 g. The idea is to trap the bearing so the race is kept in place as the material is cold formed.
The material and bearing support are oiled and then the bearing is positioned and tension applied at the bearing support just before the material starts. With a fine feed on the compound slide the bearing is moved across the face of the material to deform it into conformity with the shape of the forming tool.
Conveniently, a number of blanks will be produced in the same manner with the first forming tool installed. These can be of different sizes, because the first forming tool is sized to be usable for a range of sizes of nozzle top, from the smallest, say 4 inches diameter, to the largest, say 12 inches diameter.
The first forming tool 6 is then removed; this has to be ‘levered off’ via the step at the outer edge of the ring plate because of the interference fit in the groove on the tool-mounting plate. A second forming tool 14 (
The second forming tool 14 is removed after all the blanks have been processed and a third forming tool 15 (
Stage 2 Nozzle Top Forming. (18 g)
The 4-inch Top former for stage 2—the fourth forming tool 16, as shown in
The first 4-inch part-formed blank is located on the M16 A2 cap screw head (diameter 24 mm) and trapped in position with the top clamp applying pressure via the tailstock and rotating center.
The 45 degree bearing tool 32 is set up on the center line as hereinbefore explained and the compound slide of the lathe is set to the same angle as the stage 2 tool, the angle being adjusted precisely as hereinbefore described.
The 90 degree bearing tool is then set up in the next tool post slot.
A standard lathe tool is set up in the next tool post slot. Using the standard lathe tool, the outside diameter of the blank is trimmed and chamfered, the diameter being adjusted so the final form is at the correct size.
The material and bearing support or top clamp are then oiled, and the 90 degree bearing tool is used to push the edge over to 90 deg. (optional).
The 45 degree bearing 32 is positioned at the top clamp just before the material starts and tension is applied to the bearing. The top clamp is designed to be at the right diameter to apply the correct amount of tension to trap the bearing and form the material. With a fine feed on the compound slide the bearing is moved across the face of the material from the position shown in
These steps are then repeated on the remaining 4-inch part-formed blanks.
The next step is to remove the 4-inch Top former stage 2—the fourth forming tool 20; this has to be extracted from the ring plate groove via two M10 HT grub screws screwed into threaded holes 22.
Other sizes of stage 2 formers, as illustrated in
Nozzle Bottom Plate Forming
A 4-inch bottom plate forming tool 40—the sixth forming tool, as illustrated in
A 4-inch bottom plate clamp 50—the seventh forming tool, as illustrated in
A number of 4-inch bottom plate blanks are cut from 16 Gauge stainless steel (0.00598 inches, 1.519 mm thickness). The first of the blanks is located and trapped in position with the bottom plate clamp applying pressure via the tailstock and rotating center. (A ring can be used to centralize the blank to the tooling.).
A standard lathe tool is set up in the next tool post slot and is used to trim and chamfer the outside diameter of the blank; the diameter should be adjusted so the final form is at the correct size. The material and bearing support or bottom clamp 50 are then oiled.
The 45 degree roller is used to push the edge over to 45 degrees (optional). The 90 degree roller 55 is positioned at the bottom clamp 50 just before the material starts and tension is applied to the bearing. The bottom clamp is designed to be at the right diameter to apply the correct amount of tension to trap the bearing and form the material. With a fine feed on the compound slide the bearing is moved across the face of the material. The trapped bottom plate 56 is then released via the tail stock.
These steps are then repeated on the remaining 4-inch blanks.
The 4-inch bottom plate forming tool 40 and clamp 50 can then be re-moved and replaced by a different-sized set to enable other sizes of bottom plate, for example 6-inch diameter or 12-inch diameter, to be installed.
With reference to
The nozzle bottom 61 may be provided with a plurality of apertures for dispensing fluid products, but will typically have dispensing tubes 70 installed therein, as may be seen from
It will be appreciated that a wide variety of apertures and dispensing tubes may be used to achieve different decorative effects, and the invention is not limited to the particular configurations disclosed.
The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Each and every page of this submission, and all contents thereon, however characterized, identified, or numbered, is considered a substantive part of this application for all purposes, irrespective of form or placement within the application. This specification is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. Other and various embodiments will be readily apparent to those skilled in the art, from this description, figures, and the claims that follow. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
1506604.6 | Apr 2015 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3072086 | Birchfield | Jan 1963 | A |
6532786 | Luttgeharm | Mar 2003 | B1 |
20040226333 | Kato | Nov 2004 | A1 |
20130152652 | Allwood | Jun 2013 | A1 |
20150202677 | Ogishi | Jul 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160303634 A1 | Oct 2016 | US |