Not applicable.
1. Field of the Invention
The present invention relates generally to a minimally invasive method, device and system for treating spinal disorders using imaging guidance. More particularly, this invention relates to devices and tools that provide a percutaneous portal to tissues in a region of interest. Still more particularly, this invention relates to devices and tools that provide percutaneous portals to tissue through bone.
2. Background of the Invention
The vertebral column (spine, spinal column, backbone) forms the main part of the axial skeleton, provides a strong yet flexible support for the head and body, and protects the spinal cord disposed in the vertebral canal, which is formed within the vertebral column. The vertebral column comprises a stack of vertebrae with an intervertebral disc between adjacent vertebrae The vertebrae are stabilized by muscles and ligaments that hold the vertebrae in place and limit the movements of the vertebrae.
As illustrated in
Vertebral arch 14 is formed by two pedicles 24 which project posteriorly to meet two laminae 16. The two laminae 16 meet posteriomedially to form the spinous process 18. At the junction of pedicles 24 and laminae 16, six processes arise. Two transverse processes 20 project posterolaterally, two superior articular processes 22 project generally superiorly and are positioned superior to two inferior articular processes 25 that generally project inferiorly.
The vertebral foramen 15 is generally an oval shaped space that contains and protects the spinal cord 28. Spinal cord 28 comprises a plurality of nerves 34 surrounded by cerebrospinal fluid (CSF) and an outermost sheath/membrane called the dural sac 32. The CSF filled dural sac 32 containing nerves 34 is relatively compressible. Posterior to the spinal cord 28 within vertebral foramen 15 is the ligamentum flavum 26. Laminae 16 of adjacent vertebral arches 14 in the vertebral column are joined by the relatively broad, elastic ligamentism flavum 26.
In degenerative conditions of the spine, narrowing of the spinal canal (stenosis) can occurs. Lumbar spinal stenosis is often defined as a dural sac cross-sectional area less than 100 mm2 or an anteroposterior (AP) dimension of the canal of less than 10-12 mm for an average male.
The source of many cases of lumbar spinal stenosis is thickening of the ligamentum flavum, Spinal stenosis may also be caused by subluxation, facet joint hypertrophy, osteophyte formation, underdevelopment of spinal canal, spondylosis deformians, degenerative intervertebral discs, degenerative spondylolisthesis, degenerative arthritis, ossification of the vertebral accessory ligaments and the like. A less common cause of spinal stenosis, which usually affects patients with morbid obesity or patients on oral corticosteroids, is excess fat in the epidural space. The excessive epidural fat compresses the dural sac, nerve roots and blood vessels contained therein and resulting in back and leg pain and weakness and numbness of the legs. Spinal stenosis may also affect the cervical and, less commonly, the thoracic spine.
Patients suffering from spinal stenosis are typically first treated with exercise therapy, analgesics and anti-inflammatory medications. These conservative treatment options frequently fail. If symptoms are severe, surgery is required to decompress the canal and nerve roots.
In some conventional approaches to correct stenosis in the lumbar region, an incision is made in the back and the muscles and supporting structures are stripped away from the spine, exposing the posterior aspect of the vertebral column. The thickened ligamentum flavum is then exposed by removal of a portion of the vertebral arch, often at the laminae, covering the back of the spinal canal (laminectomy). The thickened ligamentum flavum ligament can then be excised by sharp dissection with a scalpel or punching instruments such as a Kerison punch that is used to remove small chips of tissue. The procedure is performed under general anesthesia. Patients are usually admitted to the hospital for approximately five to seven days depending on the age and overall condition of the patient. Patients usually require between six weeks and three months to recover from the procedure. Further, many patients need extended therapy at a rehabilitation facility to regain enough mobility to live independently.
Much of the pain and disability after an open laminectomy results from the tearing and cutting of the back muscles, blood vessels, supporting ligaments, and nerves that occurs during the exposure of the spinal column. Also, because the spine stabilizing back muscles and ligaments are stripped and detached from the spine during the laminectomy, these patients frequently develop spinal instability post-operatively.
Minimally invasive techniques offer the potential for less post-operative pain and faster recovery compared to traditional open surgery Percutaneous interventional spinal procedures can be performed with local anesthesia, thereby sparing the patient the risks and recovery time required with general anesthesia. In addition, there is less damage to the paraspinal muscles and ligaments with minimally invasive techniques, thereby reducing pain and preserving these important stabilizing structures.
Various techniques for minimally invasive treatment of the spine are known. Microdiscectomy is performed by making a small incision in the skin and deep tissues to create a portal to the spine. A microscope is then used to aid in the dissection of the adjacent structures prior to discectomy. The recovery for this procedure is much shorter than traditional open discectomies. Percutaneous discectomy devices with fluoroscopic guidance have been used successfully to treat disorders of the disc but not to treat spinal stenosis or the ligamentum flavum directly. Arthroscopy or direct visualization of the spinal structures using a catheter or optical system have also been proposed to treat disorders of the spine including spinal stenosis, however these devices still use miniaturized standard surgical instruments and direct visualization of the spine similar to open surgical procedure. These devices and techniques are limited by the small size of the canal and these operations are difficult to perform and master. In addition, these procedures are painful and often require general anesthesia. Further, the arthroscopy procedures are time consuming and the fiber optic systems are expensive to purchase and maintain.
Still further, because the nerves of the spinal cord pass through the spinal canal directly adjacent to and anterior to the ligamentum flavum, any surgery, regardless of whether open or percutaneous, includes a risk of damage to the nerves of the spinal cord.
Hence, it remains desirable to provide simple methods, techniques, and devices for treating spinal stenosis and other spinal disorders without requiring open surgery. It is further desired to provide a system whereby the risk of damage to the dural sac containing the spinal nerves may be reduced.
These and other needs in the art are addressed in one embodiment by a device for providing percutaneous access to a surgical site. In an embodiment, the device comprises a handle In addition, the device comprises a bone-cutting member extending from the handle, wherein the bone-cutting member includes a handle end fixed to the handle and a cutting end, Further, the device comprises a portal including a first end, a second end, and a through bore. extending therebetween, wherein the bone-cutting member is disposed within the through bore. Still further, the portal has a first position in which the second end is releasably coupled to the handle and a second position in which the second end is released from the handle and the bone-cutting member.
Theses and other needs in the art are addressed in another embodiment by a system for performing a percutaneous ligamentum flavum decompression. In an embodiment, the system comprises a handle. In addition, the system comprises a bone-cutting member extending from the handle. Further, the system comprises a portal including a cannulated member extending from the handle and concentric with the bone-cutting member, wherein the portal is releasably coupled to the handle. Still further, the system comprises a tissue-excision device sized and configured to pass through the portal.
Theses and other needs in the art are addressed in another embodiment by a method for treating stenosis in a spine, the spine including a thecal sac, a spinal canal and an epidural space therebetween, the stenosis determining a region of interest in the spine. In an embodiment, the method comprises the step of compressing the thecal sac in the region of interest by injecting a fluid to form a safety zone and establish a working zone, the safety zone lying between the working zone and the thecal sac. In addition, the method comprises the step of percutaneously cutting a hole through a lamina of the spine adjacent the region of interest. Further, the method comprises the step of positioning a portal through the hole to provide access to the region of interest. Still further, the method comprises the step of inserting a tissue-excision tool through the portal and into tissue in the working zone. Moreover, the method comprises the step of using the tool to percutaneously reduce the stenosis. In addition, the method comprises the step of utilizing imaging to visualize the position of the tool during at least a part of method.
The foregoing has outlined rather broadly the features and technical advantages of embodiments of the present invention in order that the detailed description that follows may be better understood. Additional features and advantages of embodiments of the present invention will be described hereinafter that form the subject of the claims. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes. It should also be realized by those skilled in the art that such equivalent constructions do not depart from and scope of the invention as set forth in the appended claims.
For a more complete understanding of the invention, reference is made to the accompanying drawings, wherein:
FIGS. 27 is a perspective view of an entire tool constructed in accordance with preferred embodiments;
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment
For purposes of this discussion, the x-, y-, and z-axes are shown in
It is to be understood that the median/midsagittal plane passes from the top to the bottom of the body and separates the left and the right sides of the body, and the spine, into substantially equal halves (e.g., two substantially equal lateral sides). Further, it is to be understood that the frontal/coronal plane essentially separates the body into the forward (anterior) half and the back (posterior) half, and is perpendicular to the median plane. Still further, it is to be understood that the transverse plane is perpendicular to both the median plane and coronal plane and is the plane which divides the body into an upper and a lower half.
The Spinal Canal and Spinal Stenosis
Referring again to
Compression of spinal cord 28, particularly in the lumbar region, may result in low back pain as well as pain or abnormal sensations in the legs. Further, compression of the blood vessels in the epidural space 27 that houses the nerves of the cauda equina may result in ischemic pain termed spinal claudication.
In order to relieve the symptoms associated with a thickened or enlarged ligamentum flavum 26, methods, techniques, and devices described herein may be employed to reduce the compressive forces exerted by the thickened ligamentum flavum on spinal cord 28 and the blood vessels in epidural space 27 (e.g., decompress spinal cord 28 and blood vessels in epidural space 27). In particular, compressive forces exerted by the thickened/enlarged ligamentum flavum 26 may be reduced by embodiments of a minimally invasive ligament decompression (MILD) procedure described herein. In some embodiments, the MILD procedure may be performed percutaneously to reduce the size of ligamentum flavum 26 by excising portions of ligamentum flavum 26. In particular; in some embodiments of the MILD procedure, the ligamentum flavum 26 is accessed, cut and removed ipsilaterally (i.e., on the same side of vertebral arch 14) by a percutaneous cranial-caudal approach. Such an embodiment of the MILD procedure may be described hereinafter as ipsilateral Approach MILD Procedure (ILAMP).
Creation of Safety Zone
As shown in
As previously described, spinal cord 28 comprises nerves 34 surrounded by CSF and is contained within dural sac 32. Since more than 90% of the volume of dural sac 32 in the lumbar region is filled by CSF, dural sac 32 is highly compressible. Thus, even when stenosis is causing compression of spinal cord 28, in most cases it is possible to temporarily compress spinal cord 28 further. Thus, according to preferred embodiments, dural sac 32 is further compressed in the region of interest by injecting a fluid into epidural space 27 to create safety zone 40. The presence of the injected fluid comprising safety zone 40 gently applies an additional compressive force to the outer surface of dural sac 32 so that at least a portion of the CSF within dural sac 32 is forced out of dural sac 32 in the region of interest, resulting in safety zone 40 between dural sac 32 and ligamentum flavum 26.
According to some embodiments, dural sac 32 is compressed by injecting a standard radio-opaque non-ionic myelographic contrast medium or other imagable or non-imagable medium into epidural space 27 in the region of interest. This is preferably accomplished with a percutaneous injection. Sufficient injectable fluid is preferably injected to displace the CSF out of the region of interest and compress dural sac 32 to at least a desired degree. The injected medium is preferably substantially contained within the confines of epidural space 27 extending to the margins of the dural sac 32. The epidural space is substantially watertight and the fatty tissues and vascularization in epidural space 27, combined with the viscous properties of the preferred fluids, serve to substantially maintain the injected medium in the desired region of interest. This novel method for protecting spinal cord 28 column may be referred to hereinafter as “contrast-guided dural protection.”
Once a safety zone 40 has been created, a tool 100, such as the tissue excision devices and tissue retraction devices described below, may be inserted into the ligamentum flavum 26, as illustrated in
While it is preferred that the tip of tool 100 remain within ligamentum flavum 26 as shown, the presence of safety zone 40 reduces the likelihood that dural sac 32 will be damaged, even if the tool breaks through the anterior surface of ligamentum flavum 26.
For insertion of tool 100, a fluoroscopic window of access (FWA) is defined by the inferior margin of the lamina (contra lateral to the point of instrument entry in the soft tissues) and the dorsal margin of the contrast material that defines the epidural space. This FWA is roughly orthogonal to the long axis of the cutting instrument, which parallels the inferior surface of the lamina as in
Because the present techniques are preferably performed percutaneously, certain aspects of the present invention may be facilitated by imaging. In this context, the spine can be imaged using any suitable technology, including without limitation, 2D fluoroscopy, 3D fluoroscopy, CT, MRI, ultrasound or with direct visualization with fiber optic or microsurgical techniques. Stereotactic or computerized image fusion techniques are also suitable. Fluoroscopy is currently particularly well-suited to the techniques disclosed herein. Fluoroscopic equipment is safe and easy to use, readily available in most medical facilities, relatively inexpensive. In a typical procedure, using direct biplane fluoroscopic guidance and local anesthesia, epidural space 27 is accessed for injection of contrast media adjacent to the surgical site.
If the injected medium is radio-opaque, as are for example myelographic contrast media, the margins of the expanded epidural space will be readily visible using fluoroscopy or CT imaging. Thus, the safety zone created by the present contrast-guided dural compression techniques can reduce the risk of damage to the spinal cord during procedures to remove or displace portions of the ligamentum flavum and/or laminae in order to treat spinal stenosis.
Injectable Medium
If desired, the injected medium can be provided as a re-absorbable water-soluble gel, so as to better localize safety zone 40 at the site of surgery and reduce leakage of this protective layer from the vertebral/spinal canal. An injectable gel is a significant improvement on prior epidural injection techniques. The gel is preferably substantially more viscid than conventional contrast media and the relatively viscid and/or viscous gel preferably tends to remain localized at the desired site of treatment as it does not spread as much as standard liquid contrast media that are used in epidurography. This may result in more uniform compression of dural sac 32 and less leakage of contrast out of the vertebral/spinal canal. In addition, preferred embodiments of the gel are re-absorbed more slowly than conventional contrast media, allowing for better visualization during the course of the surgical procedure.
In some embodiments, a contrast agent can be included in the gel itself, so that the entire gel mass is imagable. In other embodiments, an amount of contrast can be injected first, followed by the desired amount of gel, or all amount of gel can be injected first, followed by the desired amount of contrast. In this case, the contrast agent is captured on the surface of the expanding gel mass, so that the periphery of the mass is imagable.
Any standard hydrophilic-lipophilic block copolymer (Pluronic) gel such as are known in the art would be suitable and other gels may be used as the injectable medium The gel preferably has an inert base. In certain embodiments, the gel material is liquid at ambient temperatures and can be injected through a small bore (such as a 27 gauge needle). The gel then preferably becomes viscous when warmed to body temperature after being injected. The viscosity of the gel can be adjusted through the specifics of the preparation. The gel or other fluid is preferably sufficiently viscid or viscous at body temperature to compress and protect the thecal sac in the manner described above and to remain sufficiently present in the region of interest for at least about 30 minutes. Thus, in some embodiments, the injected gel attains a viscosity that is two, three, six or even ten times that of the fluids that are typically used for epidurograms.
In certain embodiments, the injected medium undergoes a reversible change in viscosity when warmed to body temperature so that it can be injected as a low-viscosity fluid, thicken upon injection into the patient, and be returned to its low-viscosity state by cooling, In these embodiments, the injected medium is injected as desired and thickens upon warming, but can be removed by contacting it with a heat removal device, such as an aspirator that has been provided with a cooled tip. As a result of localized cooling, the gel reverts to its initial non viscous liquid state and can be easily suctioned up the cooled needle or catheter.
An example of a suitable contrast medium having the desired properties is Omnipaque® 240 available from Nycomed, New York, which is a commercially available non-ionic iodinated myelographic contrast medium. Other suitable injectable media will be known to those skilled in the art. Because of the proximity to spinal cord 28 and spinal nerves 34, it is preferred not to use ionic media in the injectable medium. The preferred compositions are reabsorbed relatively rapidly after the procedure. Thus any residual gel compression on dural sac 32 after the MILD procedure dissipates relatively quickly. For example, in preferred embodiments, the gel would have sufficient viscosity to compress dural sac 32 for thirty minutes, and sufficient degradability to be substantially reabsorbed within approximately two hours.
The injected contrast medium further may further include one or more bioactive agents. For example, medications such as those used in epidural steroid injection (e.g. Depo medrol, Celestone Soluspan) may be added to the epidural gel to speed healing and reduce inflammation, scarring and adhesions, The gel preferably releases the steroid medication slowly and prolongs the anti-inflammatory effect, which can be extremely advantageous. Local anesthetic agents may also be added to the gel, This prolongs the duration of action of local anesthetic agents in the epidural space to prolong pain relief during epidural anesthesia. In this embodiment the gel may be formulated to slow the reabsorption of the gel.
The present gels may also be used for epidural steroid injection and perineural blocks for management of acute and chronic spinal pain. Thrombin or other haemostatic agents can be added if desired, so as to reduce the risk of bleeding.
In some embodiments, the gel may also be used as a substitute for a blood patch if a CSF leak occurs. The gel may also be used as an alternative method to treat lumbar puncture complications such as post-lumbar puncture CSF leak or other causes of intracranial hypotension. Similarly, the gel may be used to patch postoperative CSF leaks or dural tears, If the dural sac were inadvertently torn or cut, then gel could immediately serve to seal the site and prevent leakage of the cerebral spinal fluid.
Percutaneous Tissue Excision
After safety zone 40 has been created, the margins of epidural space 27 are clearly demarcated by the injected medium and can be visualized radiographically if an imagable medium has been used. As mentioned above, percutaneous procedures can now safely be performed on ligamentum flavum 26 and/or surrounding tissues without injuring dural sac 32 or nerves 34 and the spinal canal can be decompressed using any of several techniques. Suitable decompression techniques include removal of tissue from the ligamentum flavum, laminectomy, laminotomy, and ligament retraction and anchoring.
In some embodiments, all or a portion of ligamentum flavum 26 and/or lamina 16 are excised using a percutaneous tissue excision device or probe 100, which may hereinafter be referred to as the MILD device, As shown schematically in
Preferred embodiments of the present tissue excision devices and techniques can take several forms. In the discussion below, the distal ends of the tools are described in detail. The construction of the proximal ends of the tools, and the means by which the various components disclosed herein are assembled and actuated, will be known and understood by those skilled in the art.
By way of example, in the embodiment shown in
Tissue-engaging means 56 may be a needle, hook, blade, tooth or the like, and preferably has at least one flexible barb or hook 58 attached to its shaft. The barb 58 or barbs may extend around approximately 120 degrees of the circumference of the shaft. Barbs 58 are preferably directed towards the proximal end of the tool. When tissue-engaging means 56 is retracted slightly, barbs 58 allow it to engage a segment of tissue. Depending on the configuration of barbs 58, the tissue sample engaged by tissue-engaging means 56 may be generally cylindrical or approximately hemisphenical. Once needle 56 has engaged the desired tissue, inner occluding means 54, which is preferably provided with a sharpened distal edge, is advanced so that it cuts the engaged tissue section or sample loose from the surrounding tissue. Hence occluding means 54 also functions as a cutting means in this embodiments. In alternative embodiments, such as
Referring still to
Referring briefly to
In still other embodiments, the tissue-engaging means may comprise a hook or tooth or the like that engages tissue via aperture 52 by being rotated about the tool axis. In such embodiments (not shown) and by way of example only, the tissue-engaging means could comprise a partial cylinder that is received in outer cannula 51 and has a serrated side edge. Such a device can be rotated via a connection with the tool handle or other proximal device. As the serrated edge traverses aperture 52 tissue protruding into the tool via the aperture is engaged by the edge, whereupon it can be resected and retrieved in the manner disclosed herein.
In preferred embodiments, the working tip of tool 100 remains within the ligamentum flavum and does not penetrate the safety zone 40. Nonetheless, safety zone 40 is provided so that even an inadvertent penetration of the tool into the epidural space will not result in damage to the thecal sac. Regardless of the means by which the tissue is engaged and cut, it is preferably retrieved from the distal end of the tool so that additional tissue segments can be excised without requiring that the working tip of the tool be repositioned. A tissue-removal device such as that described below is preferably used to remove the tissue from the retrieval device between each excision.
Tissue Removal
Each piece of tissue may be removed from barbs 58 by pushing tissue-engaging means 56 through an opening that is large enough to allow passage of the flexible barbs and supporting needle but smaller than the diameter of the excised tissue mass. This pushes the tissue up onto the shaft, where it can be removed with a slicing blade or the like or by sliding the tissue over the proximal end of the needle. Alternatively, needle 56 can be removed and re-inserted into the tool for external, manual tissue removal.
It is expected that in some embodiments, approximately 8-10 cores or segments of tissue will be excised and pushed up the shaft towards the hub during the course of the procedure. Alternatively, a small blade can be used to split the tissue segment and thereby ease removal of the segment from the device. If desired, a blade for this purpose can be placed on the shaft of needle 56 proximal to the barbs.
In an exemplary embodiment, shown in
In an alternative embodiment shown in
In another alternative embodiment (not shown) an alternative mechanism for removing the tissue segment from needle 56 includes an adjustable aperture in a disc. After the tissue-bearing needle is pulled back through the aperture, the aperture is partially closed. Needle 56 and flexible hooks 58 then can pass through the partially closed aperture but the larger cylinder of tissue cannot. Thus the tissue sentient is pushed back onto the shaft. The tissue segment can either be pulled off the proximal end of the shaft or cut off of it. A small blade may be placed just proximal to the barbs to help cut the tissue segment off the shaft. The variable aperture can formed by any suitable construction, including a pair of metal plates with matching edges that each define one half of a central opening. The two pieces may be held apart by springs. The aperture may be closed by pushing the two edges together. In other embodiments, this process can be mechanically automated by using a disc or plate with an opening that is adjustable by a variety of known techniques, including a slit screw assembly or flexible gaskets.
Alternative Tissue Excision Devices
Other cutting and/or grasping devices can be used in place of the system described above. For example, embodiments of the grasping mechanism include but are not limited to: needles with flexible barbs, needles with rigid barbs, corkscrew-shaped needles, and/or retaining wires. The corkscrew-shaped needle shown in
In other embodiments, shown in
Advancing one end of sleeve 74 toward the other end of sleeve 74 causes each strip 77 to buckle or bend. If strips 77 are prevented from buckling inward or if they are predisposed to bend in the desired direction, they will bend outward, thereby forming arcuate arms 72, which extend through aperture 52 of cannulated scalpel 51, as shown in
Closable arms 72 may include on their opposing edges 78 ridges, teeth, or other means to facilitate grasping of the tissue. In other embodiments, edges 78 may be sharpened, so as to excise a segment of tissue as they close. In these embodiments, closable arms 72 may also be used in conjunction with a hook, barbed needle, pincers or the like, which can in turn be used to retrieve the excised segment from the device.
Once arms 72 have closed on the tissue, if arms 72 have not cut the tissue themselves, the tissue can be excised using a blade such as cutting element 60 above. The excised tissue can be removed from the inside of needle 51 using a tissue-engaging hook 64 or other suitable means. The process of extending and closing arms 72, excising the tissue, and removing it from the device can be repeated until a desired amount of tissue has been removed.
If desired, this cycle can be repeated without repositioning the device in the tissue. Alternatively, the tool can be rotated or repositioned as desired between excisions. It is possible to rotate or reposition the tool during an excision, but it is expected that this will not generally be preferred. Furthermore, it is expected that the steps of tissue excision and removal can be accomplished without breaching the surface of the ligament, i.e. without any part of the device entering the safety zone created by the injected fluid. Nonetheless, should the tool leave the working zone, the safety zone will reduce the risk of injury to the thecal sac.
Ligament Retraction
In some embodiments, the spinal canal may also be enlarged by retracting the ligamentum flavum, either with or without concurrent resection. Retraction is preferably but not necessarily performed after dural compression has been used to provide a safety zone. In addition, the dural compression techniques described above have the effect of pressing the ligamentum flavum back out of the spinal canal and thereby making it easier to apply a restraining means thereto.
Thus, in preferred embodiments, after a safety zone is created by epidural injection of contrast medium or gel, a retraction device 90 as shown in
The distal end of the device is preferably positioned in the ligamentum flavum under fluoroscopic guidance. If desired, an accessway through the lamina may be provided using an anchored cannula or the like. The device is held in position by support shaft 112. Distal barbs 91 are unsheathed and optionally expanded by pulling back guide housing 102, as shown in
In an alternative embodiment, the proximal end of ligament anchor 90 may be adapted to engage the lamina. This may be accomplished by having the arm posterior to the lamina or by using the laminotomy and suturing the device to the lamina there. A knotted or knotless system or a suture plate can be used.
A second embodiment of the present method uses a plurality of retraction devices 90. In this embodiment, the retraction device is inserted through one lamina in an oblique fashion, paralleling the opposite lamina. After the distal anchor is deployed, the retraction device is pulled back and across the ligamentum flavum, thereby decompressing the opposite lateral recess of the spinal canal. This is repeated on the opposite side. This same device can also be deployed with a direct approach to the lateral recess with a curved guide housing.
While retraction device 90 is describe above as a double-headed anchor, it will be understood that other devices can be used. For example sutures, barbed sutures, staples or the like can be used to fasten the ligament in a retracted position that reduces stenosis.
Using the percutaneous methods and devices described herein, significant reductions of stenosis can be achieved. For example, a dural sac cross-sectional area less than 100 mm2 or an anteroposterior (AP) dimension of the canal of less than 10-12 mm in an average male is typically considered relative spinal stenosis. A dural sac cross-sectional area less than 85 mm2 in an average male is considered severe spinal stenosis. The present devices aid techniques are anticipated to cause an increase in canal area of 25 mm2 per anchor or 50 mm2 total. With resection and/or retraction of the ligamentum flavum, the cross-sectional area of the dural sac can be increased by 10 mm2, and in some instances by as much as 20 mm2 or even 30 mm2 Likewise, the present invention can result in an increase of the anteroposterior dimension of the canal by 1 to 2 mm and in some instances by as much as 4 or 6 mm, The actual amount by which the cross-sectional area of the thecal sac and/or the anteroposterior dimension of the canal are increased will depend on the size and age of the patient and the degree of stenosis and can be adjusted by the degree of retraction of the ligament.
MILD
The minimally invasive ligament decompression (MILD) devices and techniques described herein allow spinal decompression to be performed percutaneously, avoiding the pain and risk associated with open surgery. Through the provision of a safety zone, the present devices and techniques offer reduced risk of spinal cord damage. In addition to improving nerve function, it is expected that decompression of the spinal canal in the manner described herein will result in improved blood flow to the neural elements by reducing the extrinsic pressure on the spinal vasculature. For these reasons, it is believed that spinal decompression performed according to the present invention will be preferable to decompression operations performed using currently known techniques.
Dural Shield
In some embodiments (not shown), a mechanical device such as a balloon or mechanical shield can also be used to create a protective guard or barrier between the borders of the epidural space and the adjacent structures. In one embodiment a durable expandable device is attached to the outside of the percutaneous laminectomy device, preferably on the side opposite the cutting aperture. The cutting device is inserted into the ligamentum flavum with the expandable device deflated. With the aperture directed away from the spinal canal, the expandable device is gently expanded via mechanical means or inflated with air or another sterile fluid, such as saline solution, via a lumen that may be within or adjacent to the body of the device. This pushes the adjacent vital structures clear from the cutting aperture of the device and simultaneously presses the cutting aperture into the ligament. As above, the grasping and cutting needles can then be deployed and operated as desired. The balloon does not interfere with tissue excision because it is located on the side opposite the cutting aperture. The cutting needle may be hemispherical (semi-tubular) in shape with either a straight cutting or a sawing/reciprocating blade or may be sized to be placed within the outer housing that separates the balloon from the cutting aperture.
In another embodiment, a self-expanding metal mesh is positioned percutaneously in the epidural space. First the epidural space is accessed in the usual fashion. Then a guide catheter is placed in the epidural space at the site of the intended surgical procedure. The mesh is preferably compressed within a guide catheter, When the outer cover of the guide catheter is retracted, the mesh expands in the epidural space, protecting and displacing the adjacent dural sheaths. At the conclusion of the surgical procedure, the mesh is pulled back into the guide sheath and the assembly removed. The mesh is deformable and compresses as it is pulled back into the guide catheter, in a manner similar to a self-expanding mesh stent. There are many commercially available self-expanding stents approved and in use in other applications. However, using a self-expandable mesh as a device within the epidural space to protect and displace the thecal sac is novel.
Anchoring Laminotomy Portal (ALP) Device
In some MILD procedures or other percutaneous surgical procedures, it may be desirable to use bone adjacent the surgical site as an anchor for various surgical tools and devices. For instance, when performing a ligament decompression as described above, it may be desirable to anchor the tissue-excision tool (e.g., tool 100) in the lamina of an adjacent vertebra. Anchoring provides a relatively firm base for the tools and devices used in the procedure, thereby offering the potential for more stable and consistent procedures. Thus, according to certain embodiments of the MILD procedure described herein, an image-guided percutaneous lumbar laminotomy is performed with the use of an anchoring laminotomy portal (ALP) device. The ALP is anchored to bone and provides access to the underlying tissues, ligaments, fat, and epidural space. For example, in some embodiments, the ALP may comprise a cannula having an inner bore that provides percutaneous access to the underlying ligamentum flavum in the region of interest. In such embodiments, the laminotomy is performed without disrupting the continuity of the entire lamina while accessing intervertebral discs or neural structures.
In contrast, according to some conventional techniques for reducing stenosis, an incision is made in the back and the muscles and supporting structures are stripped away from the spine, exposing the posterior aspect of the vertebral column. The thickened ligamentum flavum is then exposed by removal of a portion of the vertebral arch, often at the laminae, covering the back of the spinal canal (laminectomy). The thickened ligamentum flavum ligament can then be excised by sharp dissection with a scalpel or punching instruments However, as previously described, this approach typically requires general anesthesia and often results in a lengthy hospital stay and a painful and lengthy recovery
By contrast, the ALP device, described in more detail below, allows a surgeon to achieve percutaneously access the ligamentum flavum without cutting a large hole in the tissue or stripping tissue, muscle, or ligaments from the lamina and without performing a laminectomy. While the invention is described below in terms of a laminotomy, it will be understood that it is equally applicable to any other operation in which an adjacent bone is used as an anchoring base.
Referring now to
Referring to
Referring now to
First end 43a preferably includes a sharpened, beveled outer surface that enables first end 43a, and hence portal 43, to be more easily advanced through a hole in bone cut by bone-cutting member 42. As will de described in more detail below, when portal 43 is anchored in bone to perform a surgical procedure, first end 43a is positioned adjacent, or in, the region of interest such that bore 43c provides access through portal 43 to the region of interest. Portal 43 preferably comprises a cannula.
Second end 43b of portal 43 includes a portal access or cup 45 generally coaxial with portal 43. Portal cup 45 facilitates insertion of tools into through bore 43c of portal 43. In addition, portal cup 45 is preferably releasably affixed to handle 44, such as by threads or the like. For instance, portal cup 45 may include threads on its inner surface that mate with threads 44a (
Alternatively, portal 43 may include threads on its inner surface (not shown) adapted to mate with threads provided on the outer surface of bone-cutting member 42. In such embodiments, portal 43 will move axially relative to bone-cutting member 42 as the two components are unthreaded. Further, once completely unthreaded, portal 43 is free to move axially relative to bone-cutting member 42.
Referring still to
Referring now to
It should be appreciated that since bone-cutting member 42 is sized to fit within bore 43c of portal 43, the outside diameter of portal 43 is slightly larger than the outside diameter of bone-cutting member 42. Thus, the outside diameter of portal 43 will be slightly larger than the hole created by bone-cutting member 43, resulting in an interference fit between portal 43 and the surrounding lamina 16. In addition, as previously described, textured surface features 46 shown in
Once portal 43 is sufficiently positioned, bone-cutting member 42 can be completely removed and separated from bore 43c of portal 43. Once bore 43c is completely cleared of bone-cutting member 42, bore 43c provides a percutaneous passageway to the thickened ligamentum flavum 26, as best shown in
As previously described, portal 43 is held in place by friction resulting from the interference fit between portal 43 and lamina 16, as well as from the friction resulting from engagement of textured surface features 46 of portal 43 and lamina 16. Thus, portal 43 is relatively stable once anchored to lamina 16, thereby ensuring proper placement of first end 43a adjacent, or in, the thickened ligamentum flavum 26 during the procedure. Thus, other tools (e.g., tool 100) inserted through bore 43c of portal 43 and into the ligamentum flavum 26 on the other side of lamina 16 can be consistently and reliably emplaced in a desired spot in the ligamentum flavum 26. Since portal 43 is held in place and anchored to the bone (e.g., lamina 16) through which it passes, portal 43 allows repeated access to a desired tissue site (e.g., ligamentum flavum 26).
Referring now to
Repositioning and removal device 300 includes a handle 47 and an elongate rigid rod or body 49 extending from handle 47. Body 49 has a free end 49a and a fixed end 49b. Free end 49a preferably includes a rounded or blunt tip 48, while fixed end 49b is fixed to handle 47, such that body 49 does not move rotationally or translationally relative to handle 47. In addition, body 49 comprises a rigid tube or rod having an outside diameter that is approximately equal to or slightly smaller than the diameter of bore 43c of portal 43. Thus, elongate body 49 may be disposed coaxially within bore 43c of portal 43.
As previously discussed, device 300 is utilized to reposition portal 43, if necessary, after portal 43 is installed and anchored. Further, device 300 can be used to remove portal 43 once access through bore 43c to a region of interest is no longer needed (e.g., the procedure is complete). For instance, if portal 43 has been installed and it is desired to reposition it, body 49 of repositioning and removal device 300 may be inserted into bore 43c portal 43 and used to provide leverage and control as portal 43 is repositioned. It is expected that movement of body 29 through at least 10 degrees, more preferably through at least 20 degrees, and still more preferably through at least 30 degrees will be possible while retaining the advantages of the anchored portal 43.
During repositioning and/or removal of portal 43, rigid body 49 disposed within bore 43c also helps prevent portal 43 from buckling or bending during such movement. In addition, blunt tip 48 on first end 49a of body 49 ensures that tissue and nerves near free end 49a of body 49 and/or near first end 43a of portal 43 will not be damaged during the repositioning process
To remove portal 43, repositioning and removal device 300 is coupled to portal 43 such that portal 43 and device 300 are restricted from moving translationally relative to each other. Then device 300, along with portal 43, is pulled from the patient. Once device 300 is coupled to portal 43, slight back-and-forth repositioning of portal 43 may be necessary to loosen the engagement between portal 43 and the bone to which it is anchored, thereby enabling portal 43 to be more easily removed.
Device 300 and portal 43 may be coupled by any suitable manner including without limitation mating threads or the like. For instance, handle 47 may be provided with external threads similar to threads 44a (
The components of ALP tool 200 and repositioning and removal device 300 may be constructed of conventional materials suitable for surgical instruments. By way of example only, portal 43 can comprise 400 series stainless steel, 17 series stainless steel, 300 series stainless steel, or any other suitable material. Handles 44, 47 can be connected to bone-cutting member 42 and body 49, respectively, by over-molding, press fitting, adhesives, or combinations thereof.
While ALP tool 200 is described in the foregoing descriptions in terms of a laminotomy, and portal 43 is described as being anchored in a lamina 16, it should be appreciated that the present anchoring methods and devices can be used in any situation where it is desired to pierce a bone and perform a surgical operation using tools emplaced through the resulting opening. The anchoring portal is particularly useful when it is desired to perform a repeated operation through an opening in a bone, as the anchoring portal is fixed relative to the bone and ensures that the tool will be inserted along the same axis each time the portal is used. Similarly, the present devices can be used to adjust the angle of access in a controlled manner.
Bone Wax Application Device
Using ALP tool 200 as previously described, percutaneous access to a thickened ligamentum flavum 26 via portal 43 is provided. In particular, a hole is cut through lamina 16 by bone-cutting member 42 and portal 43 is positioned and anchored therethrough. However, in some instances, cutting of bone (e.g., lamina 16) may cause undesirable bone bleeding. Since some conventional methods to stop bleeding (e.g., cauterization, application of pressure, etc.) may be insufficient and/or ineffective to reduce or prevent bone bleeding, in preferred embodiments of the invention described herein, bone wax may be applied to the inner surface of the bore or hole cut through the bone. In general, the application of bone wax creates a physical barrier that plugs vascular openings in the bone, thereby reducing bone bleeding during and after the procedure in which the bone is cut.
In alternative embodiments, the entire hollow body 130 may comprise a surface treatment. Examples of suitable surface treatments include diamond knurling 132, sand blasting 133, machined transverse grooves 134, or machined longitudinal grooves 135. Other surface treatments may be created using media blasting, plasma etching, bead blasting, or any other suitable technique. In still other embodiments, the distal portion of bone wax application device 400 is tapered, so that the diameter of the device increases in the proximal direction. This helps the device apply radial pressure to the bone wax as it is advanced.
Hollow body 130 may comprise any suitable device including without limitation a surgical cannula, a catheter, a Hypotube, portal 43 previously described, bone-cutting member 43 previously described, or the like. For instance, surface feature 46 on portal 43 (
The present bone wax application device maybe made of any materials conventionally used in surgical instruments. Such materials include 400 series stainless steel, 17 series stainless steel, or 300 series stainless steel. The invention may be fabricated by any means including machining, laser-cutting, electro-mechanical deposition, and electro-polishing.
While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching of this invention. For example, the means by which the safety zone is formed may be varied, the shape and configuration of the tissue excision devices may be varied, and the steps used in carrying out the technique may be modified. Accordingly, the invention is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims. Likewise, the sequential recitation of steps in a claim, unless explicitly so stated, is not intended to require that the steps be performed in any particular order or that a particular step be completed before commencement of another step.
This application claims benefit of U.S. provisional application Ser. No., 60/703,921 filed Jul. 29, 2005, and entitled “Tools for Percutaneous Spinal Ligament Decompression and Device for Supporting Same,” which is hereby incorporated herein by reference in its entirety. This application also claims benefit of U.S. provisional application Ser. No. 60/733,819 filed Nov. 4, 2005, and entitled “Bone Wax Delivery Device,” which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60703921 | Jul 2005 | US | |
60733819 | Nov 2005 | US |