The present technology relates generally to sheathing tools and associated systems and methods. Some embodiments of the present technology relate to devices for loading an intravascular treatment device into a sheath.
Many medical procedures use medical device(s) to remove an obstruction (such as clot material) from a body lumen, vessel, or other organ. An inherent risk in such procedures is that mobilizing or otherwise disturbing the obstruction can potentially create further harm if the obstruction or a fragment thereof dislodges from the retrieval device. If all or a portion of the obstruction breaks free from the device and flows downstream, it is highly likely that the free material will become trapped in smaller and more tortuous anatomy. In many cases, the physician will no longer be able to use the same retrieval device to again remove the obstruction because the device may be too large and/or immobile to move the device to the site of the new obstruction.
Even in successful procedures, a physician must be cautious to prevent the walls of the vessel or body lumen from imparting undesired forces to shear or dislodge the obstruction as it passes through the vasculature during removal. These forces have the potential of fragmenting the obstruction. In some cases, the obstruction can simply break free from the retrieval device and can lodge in a new area causing more concern than the original blockage.
Procedures for treating ischemic stroke by restoring flow within the cerebral vasculature are subject to the above concerns. The brain relies on its arteries and veins to supply oxygenated blood from the heart and lungs and to remove carbon dioxide and cellular waste from brain tissue. Blockages that interfere with this blood supply eventually cause the brain tissue to stop functioning. If the disruption in blood occurs for a sufficient amount of time, the continued lack of nutrients and oxygen causes irreversible cell death (infarction). Accordingly, it is desirable to provide immediate medical treatment of an ischemic stroke. To access the cerebral vasculature, a physician typically advances a catheter from a remote part of the body (typically a leg) through the abdominal vasculature and into the cerebral region of the vasculature. Once within the cerebral vasculature, the physician deploys a device for retrieval of the obstruction causing the blockage. Concerns about dislodged obstructions or the migration of dislodged fragments increases the duration of the procedure at time when restoration of blood flow is paramount. Furthermore, a physician might be unaware of one or more fragments that dislodge from the initial obstruction and cause blockage of smaller more distal vessels.
Many physicians currently perform thrombectomies (i.e. clot removal) with stents to resolve ischemic stroke. Typically, the physician deploys a stent into the clot in an attempt to push the clot to the side of the vessel and re-establish blood flow. Tissue plasminogen activator (“tPA”) is often injected into the bloodstream through an intravenous line to break down a clot. However, it takes for the tPA to reach the clot because the tPA must travel through the vasculature and only begins to break up the clot once it reaches the clot material. tPA is also often administered to supplement the effectiveness of the stent. Yet, if attempts at clot dissolution are ineffective or incomplete, the physician can attempt to remove the stent while it is expanded against or enmeshed within the clot. In doing so, the physician must effectively drag the clot through the vasculature, in a proximal direction, into a guide catheter located within vessels in the patient's neck (typically the carotid artery). While this procedure has been shown to be effective in the clinic and easy for the physician to perform, there remain some distinct disadvantages using this approach.
For example, one disadvantage is that the stent may not sufficiently retain the clot as it pulls the clot to the catheter. In such a case, some or all of the clot might remain the vasculature. Another risk is that as the stent mobilizes the clot from the original blockage site, the clot might not adhere to the stent as the stent is withdrawn toward the catheter. This is a particular risk when passing through bifurcations and tortuous anatomy. Furthermore, blood flow can carry the clot (or fragments of the clot) into a branching vessel at a bifurcation. If the clot is successfully brought to the end of the guide catheter in the carotid artery, yet another risk is that the clot may be “stripped” or “sheared” from the stent as the stent enters the guide catheter. Regardless, simply dragging an expanded stent (either fully or partially expanded) can result in undesired trauma to the vessel. In most cases, since the stent is oversized compared to the vessel, dragging a fixed metallic (or other) structure can pull the arteries and/or strip the cellular lining from the vessel, causing further trauma such as a hemorrhagic stroke (leakage of blood from a cerebral vessel). Also, the stent can become lodged on plaque on the vessel walls resulting in further vascular damage.
In view of the above, there remains a need for improved devices and methods that can remove occlusions from body lumens and/or vessels.
At least some of the embodiments disclosed herein are devices, systems, and methods for facilitating a user in positioning an expandable, intravascular treatment device within a lumen of a catheter and/or sheath. For example, certain medical procedures may require multiple passes of the same treatment device in order to effectively treat the patient. Between passes, the treatment device is often completely removed from the catheter and/or patient and must be re-loaded into the catheter for the next pass. For instance, removing clot material from a blood vessel of a patient may include advancing a clot retrieving device to a treatment site within the blood vessel lumen, capturing at least a portion of the clot material with the clot retrieving device, removing the clot material and clot retrieving device from the patient, then repeating the foregoing process until a sufficient amount of clot material is removed.
Some embodiments of the present technology include a device for sheathing (and/or re-sheathing) a treatment device, such as a clot retrieving device. In some embodiments, the device includes a first channel and a second channel, each of which are configured to receive the treatment device in a constrained state therethrough. In some embodiments, the first channel may extend to a first opening and the second channel may extend to a second opening that is surrounded by a sidewall. The second opening may be spaced apart from the first opening by a gap, and the length of the gap may be great enough to allow a first portion of the treatment device to self-expand over the sidewall while a second portion of the treatment device generally maintains its diameter in the constrained state while crossing the gap.
The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent clauses may be combined in any combination, and placed into a respective independent clause, e.g., clause (1, 16, 20, 23, etc.). The other clauses can be presented in a similar manner.
Additional features and advantages of the subject technology are described below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.
The present technology provides devices, systems, and methods for sheathing and/or re-sheathing an intravascularly deliverable treatment device. Although many of the embodiments are described below with respect to devices, systems, and methods for removing clot material/treating embolism (such as a cerebral embolism), the sheathing tools of the present technology may be used to re-sheath any intravascularly deliverable, expandable treatment device. Other applications and other embodiments in addition to those described herein are within the scope of the technology. For example, the sheathing tools of the present technology may be used with devices for removing emboli from body lumens other than blood vessels (e.g., the digestive tract, etc.) and/or may be used to remove emboli from blood vessels outside of the brain (e.g., pulmonary blood vessels, blood vessels within the legs, etc.). In addition, the sheathing tools of the present technology may be used with devices for removing luminal obstructions other than clot material (e.g., plaque, resected tissue, etc.).
The sheath 19 may be configured to be detachably coupled to the catheter 100, the sheathing tool 200, and/or the support 300 and is configured to slidably receive the treatment device 10 in a low-profile, constrained state (not shown) therethrough. In some embodiments, such as the embodiment shown in
As shown in
In some embodiments, the treatment device 10 includes an elongated member 12 and a treatment assembly 14 coupled to a distal region of the elongated member 12. The treatment assembly 14 may be configured to be intravascularly positioned at or adjacent clot material within a blood vessel lumen and includes a first element 17 and a second element 15. In some embodiments, the first element 17 may be a self-expanding stent 17 (e.g., a laser-cut stent) and the second element 15 may be a self-expanding mesh (e.g., a braid, a weave, a lattice structure, a fabric, etc.). In some embodiments, the first and second elements 17, 15 may have other suitable configurations.
The first element 17 may have a proximal portion 17a coupled to the elongated member 12 and a distal portion 17b, and the second element 15 may have a free end portion 15b and a fixed end portion 15a coupled to the elongated member 12. The second element 15 may be flexible such that it is movable between a first position (
Examples of suitable treatment devices 10 for use with the system 1 can be found in U.S. patent application Ser. No. 15/594,410, filed May 12, 2017, which is incorporated by reference herein in its entirety. Although the sheathing tools discussed below are described with reference to the treatment device 10 shown in
When the sheathing tool 200 is in a first position, the first and second openings 214, 224 are spaced apart by a gap g having a first length, and when the sheathing tool 200 is in a second position, the first and second openings 214, 224 are spaced apart by a gap g having a second length less than the first length. The second length may be great enough to allow the second element 15 to self-expand such that the second element 15 is positioned over the sidewall while the first element 17 generally maintains its diameter in the constrained state while crossing the gap g. In other words, because the first element 17 does not have enough space between the first and second openings 214, 224 to expand, the first element 17 crosses the gap g in a constrained state which allows the first element 17 to enter through the second opening 224. If the gap g is too long, the distal ends of the first element 17 may begin to expand/splay outwardly and prevent the first element 17 from entering the second channel 226. Likewise, if the gap g is too short, the second element 15 may not have enough room for the distal portion 15b to flare radially outwardly to an extent that allows the second element 15 to extend over the second protrusion 222 and/or receive the second protrusion 222 within the lumen 27 (
As shown in
This disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and functions have not been shown and/or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, in alternative embodiments the steps may have another suitable order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the present technology. Accordingly, this disclosure and associated technology can encompass other embodiments not expressly shown and/or described herein.
Throughout this disclosure, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the terms “comprising” and the like are used throughout this disclosure to mean including at least the recited feature(s) such that any greater number of the same feature(s) and/or one or more additional types of features are not precluded. Directional terms, such as “upper,” “lower,” “front,” “back,” “vertical,” and “horizontal,” may be used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation. Reference herein to “one embodiment,” “an embodiment,” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.
Number | Name | Date | Kind |
---|---|---|---|
2918919 | Wallace | Dec 1959 | A |
2943626 | Dormia | Jul 1960 | A |
3996938 | Clark, III | Dec 1976 | A |
4347646 | Dormia | Sep 1982 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4650466 | Luther | Mar 1987 | A |
4657020 | Lifton | Apr 1987 | A |
4699147 | Chilson et al. | Oct 1987 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4807626 | McGirr | Feb 1989 | A |
4832055 | Palestrant | May 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4969891 | Gewertz | Nov 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5034001 | Garrison et al. | Jul 1991 | A |
5057114 | Wittich et al. | Oct 1991 | A |
5059178 | Ya | Oct 1991 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5147400 | Kaplan et al. | Sep 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5192286 | Phan et al. | Mar 1993 | A |
5300086 | Gory et al. | Apr 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5443478 | Purdy | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5458375 | Anspach, Jr. et al. | Oct 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5496330 | Bates et al. | Mar 1996 | A |
5509900 | Kirkman | Apr 1996 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5733302 | Myler et al. | Mar 1998 | A |
5741325 | Chaikof et al. | Apr 1998 | A |
5792156 | Perouse | Aug 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5846251 | Hart | Dec 1998 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5911710 | Barry | Jun 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5968090 | Ratcliff et al. | Oct 1999 | A |
5971938 | Hart et al. | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6033394 | Vidlund et al. | Mar 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6096053 | Bates | Aug 2000 | A |
6099534 | Bates et al. | Aug 2000 | A |
6146403 | St. Germain | Nov 2000 | A |
6159220 | Gobron et al. | Dec 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168603 | Leslie et al. | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6176873 | Ouchi | Jan 2001 | B1 |
6190394 | Lind et al. | Feb 2001 | B1 |
6217609 | Haverkost | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6248113 | Fina | Jun 2001 | B1 |
6264664 | Avellanet | Jul 2001 | B1 |
6302895 | Gobron et al. | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6348056 | Bates et al. | Feb 2002 | B1 |
6350266 | White et al. | Feb 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383196 | Leslie et al. | May 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6416505 | Fleischman et al. | Jul 2002 | B1 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6458139 | Palmer et al. | Oct 2002 | B1 |
6485497 | Wensel et al. | Nov 2002 | B2 |
6494884 | Gifford, III et al. | Dec 2002 | B2 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6514273 | Voss et al. | Feb 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6540657 | Cross, III et al. | Apr 2003 | B2 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6551342 | Shen et al. | Apr 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6585753 | Eder et al. | Jul 2003 | B2 |
6592605 | Lenker et al. | Jul 2003 | B2 |
6592607 | Palmer et al. | Jul 2003 | B1 |
6602271 | Adams et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6620148 | Tsugita | Sep 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6636758 | Sanchez et al. | Oct 2003 | B2 |
6638245 | Miller et al. | Oct 2003 | B2 |
6638293 | Makower et al. | Oct 2003 | B1 |
6641590 | Palmer et al. | Nov 2003 | B1 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6652505 | Tsugita | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6673042 | Samson et al. | Jan 2004 | B1 |
6679893 | Tran | Jan 2004 | B1 |
6685738 | Chouinard et al. | Feb 2004 | B2 |
6692508 | Wensel et al. | Feb 2004 | B2 |
6692509 | Wensel et al. | Feb 2004 | B2 |
6695858 | Dubrul et al. | Feb 2004 | B1 |
6702782 | Miller et al. | Mar 2004 | B2 |
6730104 | Sepetka et al. | May 2004 | B1 |
6745080 | Koblish | Jun 2004 | B2 |
6746468 | Sepetka et al. | Jun 2004 | B1 |
6749619 | Ouriel et al. | Jun 2004 | B2 |
6755813 | Ouriel et al. | Jun 2004 | B2 |
6800080 | Bates | Oct 2004 | B1 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6855155 | Denardo et al. | Feb 2005 | B2 |
6872211 | White et al. | Mar 2005 | B2 |
6872216 | Daniel et al. | Mar 2005 | B2 |
6890341 | Dieck et al. | May 2005 | B2 |
6893431 | Naimark et al. | May 2005 | B2 |
6905503 | Gifford, III et al. | Jun 2005 | B2 |
6913612 | Palmer et al. | Jul 2005 | B2 |
6936059 | Belef | Aug 2005 | B2 |
6939362 | Boyle et al. | Sep 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6953465 | Dieck et al. | Oct 2005 | B2 |
6964672 | Brady et al. | Nov 2005 | B2 |
7004955 | Shen et al. | Feb 2006 | B2 |
7004956 | Palmer et al. | Feb 2006 | B2 |
7037320 | Brady et al. | May 2006 | B2 |
7041126 | Shin et al. | May 2006 | B2 |
7048014 | Hyodoh et al. | May 2006 | B2 |
7058456 | Pierce | Jun 2006 | B2 |
7097653 | Freudenthal et al. | Aug 2006 | B2 |
7101380 | Khachin et al. | Sep 2006 | B2 |
7169165 | Belef et al. | Jan 2007 | B2 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7182771 | Houser et al. | Feb 2007 | B1 |
7235061 | Tsugita | Jun 2007 | B2 |
7240516 | Pryor | Jul 2007 | B2 |
7399308 | Borillo et al. | Jul 2008 | B2 |
7534252 | Sepetka et al. | May 2009 | B2 |
7578830 | Kusleika et al. | Aug 2009 | B2 |
7621870 | Berrada et al. | Nov 2009 | B2 |
7837702 | Bates | Nov 2010 | B2 |
8070791 | Ferrera et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8105333 | Sepetka et al. | Jan 2012 | B2 |
8197493 | Ferrera et al. | Jun 2012 | B2 |
8603014 | Alleman et al. | Dec 2013 | B2 |
8837800 | Bammer et al. | Sep 2014 | B1 |
9119656 | Bose et al. | Sep 2015 | B2 |
9126018 | Garrison | Sep 2015 | B1 |
9211132 | Bowman | Dec 2015 | B2 |
9241699 | Kume et al. | Jan 2016 | B1 |
9265512 | Garrison et al. | Feb 2016 | B2 |
9308007 | Cully et al. | Apr 2016 | B2 |
9399118 | Kume et al. | Jul 2016 | B2 |
9445828 | Turjman et al. | Sep 2016 | B2 |
9445829 | Brady et al. | Sep 2016 | B2 |
9492637 | Garrison et al. | Nov 2016 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9561345 | Garrison et al. | Feb 2017 | B2 |
9579119 | Cully et al. | Feb 2017 | B2 |
9585741 | Ma | Mar 2017 | B2 |
9642635 | Vale et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9737318 | Monstadt et al. | Aug 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9801643 | Hansen et al. | Oct 2017 | B2 |
9861783 | Garrison et al. | Jan 2018 | B2 |
9993257 | Losordo et al. | Jun 2018 | B2 |
10028782 | Orion | Jul 2018 | B2 |
10029008 | Creighton | Jul 2018 | B2 |
10039906 | Kume et al. | Aug 2018 | B2 |
20010041909 | Tsugita et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20010044634 | Don Michael et al. | Nov 2001 | A1 |
20010051810 | Dubrul et al. | Dec 2001 | A1 |
20020002396 | Fulkerson | Jan 2002 | A1 |
20020004667 | Adams et al. | Jan 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020058904 | Boock et al. | May 2002 | A1 |
20020062135 | Mazzocchi et al. | May 2002 | A1 |
20020072764 | Sepetka et al. | Jun 2002 | A1 |
20020082558 | Samson et al. | Jun 2002 | A1 |
20020123765 | Sepetka et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020151928 | Leslie et al. | Oct 2002 | A1 |
20020169474 | Kusleika et al. | Nov 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20020193825 | McGuckin et al. | Dec 2002 | A1 |
20030004542 | Wensel et al. | Jan 2003 | A1 |
20030023265 | Forber | Jan 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030050663 | Khachin et al. | Mar 2003 | A1 |
20030060782 | Bose et al. | Mar 2003 | A1 |
20030093087 | Jones et al. | May 2003 | A1 |
20030144687 | Brady et al. | Jul 2003 | A1 |
20030153935 | Mialhe | Aug 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030195556 | Stack et al. | Oct 2003 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040079429 | Miller et al. | Apr 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040138692 | Phung et al. | Jul 2004 | A1 |
20040153025 | Seifert et al. | Aug 2004 | A1 |
20040153118 | Clubb et al. | Aug 2004 | A1 |
20040172056 | Guterman et al. | Sep 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20040199243 | Yodfat | Oct 2004 | A1 |
20040210116 | Nakao | Oct 2004 | A1 |
20040267301 | Boylan et al. | Dec 2004 | A1 |
20050004594 | Nool et al. | Jan 2005 | A1 |
20050033348 | Sepetka et al. | Feb 2005 | A1 |
20050038447 | Huffmaster | Feb 2005 | A1 |
20050043680 | Segal et al. | Feb 2005 | A1 |
20050043756 | Lavelle et al. | Feb 2005 | A1 |
20050049619 | Sepetka et al. | Mar 2005 | A1 |
20050055033 | Leslie et al. | Mar 2005 | A1 |
20050055047 | Greenhalgh | Mar 2005 | A1 |
20050059995 | Sepetka et al. | Mar 2005 | A1 |
20050080356 | Dapolito et al. | Apr 2005 | A1 |
20050085826 | Nair et al. | Apr 2005 | A1 |
20050085847 | Galdonik et al. | Apr 2005 | A1 |
20050085849 | Sepetka et al. | Apr 2005 | A1 |
20050090857 | Kusleika et al. | Apr 2005 | A1 |
20050090858 | Pavlovic | Apr 2005 | A1 |
20050125024 | Sepetka et al. | Jun 2005 | A1 |
20050131450 | Nicholson et al. | Jun 2005 | A1 |
20050171566 | Kanamaru | Aug 2005 | A1 |
20050203571 | Mazzocchi et al. | Sep 2005 | A1 |
20050209609 | Wallace | Sep 2005 | A1 |
20050216030 | Sepetka et al. | Sep 2005 | A1 |
20050216050 | Sepetka et al. | Sep 2005 | A1 |
20050234501 | Barone | Oct 2005 | A1 |
20050234505 | Diaz et al. | Oct 2005 | A1 |
20050277978 | Greenhalgh | Dec 2005 | A1 |
20050283166 | Greenhalgh | Dec 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20060004404 | Khachin et al. | Jan 2006 | A1 |
20060009784 | Behl et al. | Jan 2006 | A1 |
20060030925 | Pryor | Feb 2006 | A1 |
20060047286 | West | Mar 2006 | A1 |
20060058836 | Bose et al. | Mar 2006 | A1 |
20060058837 | Bose et al. | Mar 2006 | A1 |
20060058838 | Bose et al. | Mar 2006 | A1 |
20060095070 | Gilson et al. | May 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060129180 | Tsugita et al. | Jun 2006 | A1 |
20060155305 | Freudenthal et al. | Jul 2006 | A1 |
20060190070 | Dieck et al. | Aug 2006 | A1 |
20060195137 | Sepetka et al. | Aug 2006 | A1 |
20060229638 | Abrams et al. | Oct 2006 | A1 |
20060253145 | Lucas | Nov 2006 | A1 |
20060271153 | Garcia et al. | Nov 2006 | A1 |
20060276805 | Yu | Dec 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20060287668 | Fawzi et al. | Dec 2006 | A1 |
20070112374 | Paul et al. | May 2007 | A1 |
20070116165 | DeMello et al. | May 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070185500 | Martin et al. | Aug 2007 | A1 |
20070185501 | Martin et al. | Aug 2007 | A1 |
20070197103 | Martin et al. | Aug 2007 | A1 |
20070198029 | Martin et al. | Aug 2007 | A1 |
20070198030 | Martin et al. | Aug 2007 | A1 |
20070198051 | Clubb et al. | Aug 2007 | A1 |
20070225749 | Martin et al. | Sep 2007 | A1 |
20070233236 | Pryor | Oct 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20080109031 | Sepetka et al. | May 2008 | A1 |
20080183198 | Sepetka et al. | Jul 2008 | A1 |
20080188885 | Sepetka et al. | Aug 2008 | A1 |
20080262528 | Martin | Oct 2008 | A1 |
20080262532 | Martin | Oct 2008 | A1 |
20090069828 | Martin et al. | Mar 2009 | A1 |
20090105722 | Fulkerson et al. | Apr 2009 | A1 |
20090105737 | Fulkerson et al. | Apr 2009 | A1 |
20090125053 | Ferrera et al. | May 2009 | A1 |
20090192518 | Golden et al. | Jul 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090299393 | Martin et al. | Dec 2009 | A1 |
20100076452 | Sepetka et al. | Mar 2010 | A1 |
20100100106 | Ferrera | Apr 2010 | A1 |
20100174309 | Fulkerson et al. | Jul 2010 | A1 |
20100185210 | Hauser et al. | Jul 2010 | A1 |
20100217187 | Fulkerson et al. | Aug 2010 | A1 |
20100256600 | Ferrera | Oct 2010 | A1 |
20100318097 | Ferrera et al. | Dec 2010 | A1 |
20110160742 | Ferrera et al. | Jun 2011 | A1 |
20110160757 | Ferrera et al. | Jun 2011 | A1 |
20110160760 | Ferrera et al. | Jun 2011 | A1 |
20110160761 | Ferrera et al. | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110166586 | Sepetka et al. | Jul 2011 | A1 |
20110288572 | Martin | Nov 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120143230 | Sepetka et al. | Jun 2012 | A1 |
20120197285 | Martin et al. | Aug 2012 | A1 |
20130030461 | Marks et al. | Jan 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20140276074 | Warner | Sep 2014 | A1 |
20140343595 | Monstadt et al. | Nov 2014 | A1 |
20150359547 | Vale et al. | Dec 2015 | A1 |
20160015402 | Brady et al. | Jan 2016 | A1 |
20160015935 | Chan et al. | Jan 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160151618 | Powers et al. | Jun 2016 | A1 |
20160157985 | Vo et al. | Jun 2016 | A1 |
20160199620 | Pokorney et al. | Jul 2016 | A1 |
20160296690 | Kume et al. | Oct 2016 | A1 |
20160302808 | Loganathan et al. | Oct 2016 | A1 |
20160354098 | Martin et al. | Dec 2016 | A1 |
20160375180 | Anzai | Dec 2016 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170086862 | Vale et al. | Mar 2017 | A1 |
20170100143 | Grandfield | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170164963 | Goyal | Jun 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170290599 | Youn et al. | Oct 2017 | A1 |
20180049762 | Seip et al. | Feb 2018 | A1 |
20180084982 | Yamashita et al. | Mar 2018 | A1 |
20180116717 | Taff et al. | May 2018 | A1 |
20180132876 | Zaidat | May 2018 | A1 |
20180140314 | Goyal et al. | May 2018 | A1 |
20180140315 | Bowman et al. | May 2018 | A1 |
20180140354 | Lam et al. | May 2018 | A1 |
20180185614 | Garrison et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
1640505 | Jul 2005 | CN |
102036611 | Apr 2011 | CN |
3501707 | Jul 1986 | DE |
200668 | Nov 1986 | EP |
1312314 | May 2003 | EP |
2319575 | Nov 2013 | EP |
2002537943 | Nov 2002 | JP |
2007-522881 | Aug 2007 | JP |
2007252951 | Oct 2007 | JP |
2011508635 | Mar 2011 | JP |
2014004219 | Jan 2014 | JP |
2018118132 | Aug 2018 | JP |
20180102877 | Sep 2018 | KR |
WO-9409845 | May 1994 | WO |
WO-9509586 | Apr 1995 | WO |
WO-9601591 | Jan 1996 | WO |
WO-9617634 | Jun 1996 | WO |
WO-9619941 | Jul 1996 | WO |
WO-9727808 | Aug 1997 | WO |
WO-9727893 | Aug 1997 | WO |
WO-9803120 | Jan 1998 | WO |
WO-0053120 | Sep 2000 | WO |
WO-0072909 | Dec 2000 | WO |
WO-0132254 | May 2001 | WO |
WO-0154622 | Aug 2001 | WO |
WO-0167967 | Sep 2001 | WO |
WO-0202162 | Jan 2002 | WO |
WO-0228291 | Apr 2002 | WO |
WO-03000334 | Jan 2003 | WO |
WO-03061730 | Oct 2003 | WO |
WO-03089039 | Oct 2003 | WO |
WO-2006031410 | Mar 2006 | WO |
WO-2006122076 | Nov 2006 | WO |
WO-2007092820 | Aug 2007 | WO |
WO-2008036156 | Mar 2008 | WO |
WO-2008036156 | Mar 2008 | WO |
WO-2008131116 | Oct 2008 | WO |
2008539958 | Nov 2008 | WO |
WO-2009034456 | Mar 2009 | WO |
WO-2009086482 | Jul 2009 | WO |
WO-2011092383 | Jul 2011 | WO |
WO-2011091383 | Jul 2011 | WO |
WO-2012009675 | Jan 2012 | WO |
WO-2012162437 | Nov 2012 | WO |
WO-2013106146 | Jul 2013 | WO |
2015141317 | Sep 2015 | WO |
2017192999 | Nov 2017 | WO |
2018019829 | Feb 2018 | WO |
2018033401 | Feb 2018 | WO |
2018046408 | Mar 2018 | WO |
2018137029 | Aug 2018 | WO |
2018137030 | Aug 2018 | WO |
2018145212 | Aug 2018 | WO |
2018156813 | Aug 2018 | WO |
2018172891 | Sep 2018 | WO |
2018187776 | Oct 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20180353196 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62518586 | Jun 2017 | US |