Tools for sheathing treatment devices and associated systems and methods

Information

  • Patent Grant
  • 10945746
  • Patent Number
    10,945,746
  • Date Filed
    Wednesday, June 13, 2018
    6 years ago
  • Date Issued
    Tuesday, March 16, 2021
    3 years ago
Abstract
Devices for loading intravascular treatment devices into a sheath and associated systems and methods are disclosed herein. A sheathing tool may include, for example, a first channel extending to a first opening, the first channel configured to receive a treatment device in a constrained state therethrough. The treatment device may include an elongated member and a first element and a second element at a distal region of the elongated member. The second channel may extend to a second opening, the second opening surrounded by a sidewall and configured to receive the treatment device in the constrained state therethrough, wherein the second opening is spaced apart from the first opening by a gap, and wherein a length of the gap is great enough to allow the first element to self-expand over the sidewall while the second element generally maintains its diameter in the constrained state while crossing the gap.
Description
TECHNICAL FIELD

The present technology relates generally to sheathing tools and associated systems and methods. Some embodiments of the present technology relate to devices for loading an intravascular treatment device into a sheath.


BACKGROUND

Many medical procedures use medical device(s) to remove an obstruction (such as clot material) from a body lumen, vessel, or other organ. An inherent risk in such procedures is that mobilizing or otherwise disturbing the obstruction can potentially create further harm if the obstruction or a fragment thereof dislodges from the retrieval device. If all or a portion of the obstruction breaks free from the device and flows downstream, it is highly likely that the free material will become trapped in smaller and more tortuous anatomy. In many cases, the physician will no longer be able to use the same retrieval device to again remove the obstruction because the device may be too large and/or immobile to move the device to the site of the new obstruction.


Even in successful procedures, a physician must be cautious to prevent the walls of the vessel or body lumen from imparting undesired forces to shear or dislodge the obstruction as it passes through the vasculature during removal. These forces have the potential of fragmenting the obstruction. In some cases, the obstruction can simply break free from the retrieval device and can lodge in a new area causing more concern than the original blockage.


Procedures for treating ischemic stroke by restoring flow within the cerebral vasculature are subject to the above concerns. The brain relies on its arteries and veins to supply oxygenated blood from the heart and lungs and to remove carbon dioxide and cellular waste from brain tissue. Blockages that interfere with this blood supply eventually cause the brain tissue to stop functioning. If the disruption in blood occurs for a sufficient amount of time, the continued lack of nutrients and oxygen causes irreversible cell death (infarction). Accordingly, it is desirable to provide immediate medical treatment of an ischemic stroke. To access the cerebral vasculature, a physician typically advances a catheter from a remote part of the body (typically a leg) through the abdominal vasculature and into the cerebral region of the vasculature. Once within the cerebral vasculature, the physician deploys a device for retrieval of the obstruction causing the blockage. Concerns about dislodged obstructions or the migration of dislodged fragments increases the duration of the procedure at time when restoration of blood flow is paramount. Furthermore, a physician might be unaware of one or more fragments that dislodge from the initial obstruction and cause blockage of smaller more distal vessels.


Many physicians currently perform thrombectomies (i.e. clot removal) with stents to resolve ischemic stroke. Typically, the physician deploys a stent into the clot in an attempt to push the clot to the side of the vessel and re-establish blood flow. Tissue plasminogen activator (“tPA”) is often injected into the bloodstream through an intravenous line to break down a clot. However, it takes for the tPA to reach the clot because the tPA must travel through the vasculature and only begins to break up the clot once it reaches the clot material. tPA is also often administered to supplement the effectiveness of the stent. Yet, if attempts at clot dissolution are ineffective or incomplete, the physician can attempt to remove the stent while it is expanded against or enmeshed within the clot. In doing so, the physician must effectively drag the clot through the vasculature, in a proximal direction, into a guide catheter located within vessels in the patient's neck (typically the carotid artery). While this procedure has been shown to be effective in the clinic and easy for the physician to perform, there remain some distinct disadvantages using this approach.


For example, one disadvantage is that the stent may not sufficiently retain the clot as it pulls the clot to the catheter. In such a case, some or all of the clot might remain the vasculature. Another risk is that as the stent mobilizes the clot from the original blockage site, the clot might not adhere to the stent as the stent is withdrawn toward the catheter. This is a particular risk when passing through bifurcations and tortuous anatomy. Furthermore, blood flow can carry the clot (or fragments of the clot) into a branching vessel at a bifurcation. If the clot is successfully brought to the end of the guide catheter in the carotid artery, yet another risk is that the clot may be “stripped” or “sheared” from the stent as the stent enters the guide catheter. Regardless, simply dragging an expanded stent (either fully or partially expanded) can result in undesired trauma to the vessel. In most cases, since the stent is oversized compared to the vessel, dragging a fixed metallic (or other) structure can pull the arteries and/or strip the cellular lining from the vessel, causing further trauma such as a hemorrhagic stroke (leakage of blood from a cerebral vessel). Also, the stent can become lodged on plaque on the vessel walls resulting in further vascular damage.


In view of the above, there remains a need for improved devices and methods that can remove occlusions from body lumens and/or vessels.


SUMMARY

At least some of the embodiments disclosed herein are devices, systems, and methods for facilitating a user in positioning an expandable, intravascular treatment device within a lumen of a catheter and/or sheath. For example, certain medical procedures may require multiple passes of the same treatment device in order to effectively treat the patient. Between passes, the treatment device is often completely removed from the catheter and/or patient and must be re-loaded into the catheter for the next pass. For instance, removing clot material from a blood vessel of a patient may include advancing a clot retrieving device to a treatment site within the blood vessel lumen, capturing at least a portion of the clot material with the clot retrieving device, removing the clot material and clot retrieving device from the patient, then repeating the foregoing process until a sufficient amount of clot material is removed.


Some embodiments of the present technology include a device for sheathing (and/or re-sheathing) a treatment device, such as a clot retrieving device. In some embodiments, the device includes a first channel and a second channel, each of which are configured to receive the treatment device in a constrained state therethrough. In some embodiments, the first channel may extend to a first opening and the second channel may extend to a second opening that is surrounded by a sidewall. The second opening may be spaced apart from the first opening by a gap, and the length of the gap may be great enough to allow a first portion of the treatment device to self-expand over the sidewall while a second portion of the treatment device generally maintains its diameter in the constrained state while crossing the gap.


The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent clauses may be combined in any combination, and placed into a respective independent clause, e.g., clause (1, 16, 20, 23, etc.). The other clauses can be presented in a similar manner.

    • 1. A device for sheathing a treatment device having an elongated member and a first element and a second element at a distal region of the elongated member, wherein the device comprises:
      • a first channel extending to a first opening, the first channel configured to receive the treatment device in a constrained state therethrough; and
      • a second channel extending to a second opening, the second opening surrounded by a sidewall and configured to receive the treatment device in the constrained state therethrough, wherein the second opening is spaced apart from the first opening by a gap, and wherein a length of the gap is great enough to allow the first element to self-expand over the sidewall while the second element generally maintains its diameter in the constrained state while crossing the gap.
    • 2. The device of Clause 1, wherein an inner diameter of the second channel tapers distally from the second opening.
    • 3. The device of Clause 1 or Clause 2, wherein an outer diameter of the sidewall increases distally from the second opening.
    • 4. The device of any one of Clauses 1-3, wherein the first and second openings are fixed relative to one another such that the length of the gap is fixed.
    • 5. The device of any one of Clauses 1-4, wherein the first and second openings are movable relative to one another such that the length of the gap is adjustable.
    • 6. The device of any one of Clauses 1-5, wherein the first channel is within a first housing and the second channel is within a second housing movable relative to the first housing, and wherein the first housing has a detent configured to receive a protrusion of the second housing, or vice versa, such that the first housing is locked in place relative to the second housing.
    • 7. The device of any one of Clauses 1-6, wherein the first channel is configured to receive a sheath therethrough, wherein the sheath is configured to slidably receive the treatment device therein in the constrained state.
    • 8. The device of any one of Clauses 1-7, wherein the second channel is configured to receive a sheath therethrough, and wherein the sheath is configured to slidably receive the treatment device therein in the constrained state.
    • 9. The device of any one of Clauses 1-8, wherein the first element is a self-expanding element.
    • 10. The device of any one of Clauses 1-9, wherein the second element is a self-expanding element.
    • 11. The device of any one of Clauses 1-10, wherein the first element is a mesh.
    • 12. The device of any one of Clauses 1-11, wherein the second element is a stent.
    • 13. The device of any one of Clauses 1-12, wherein, in an expanded state, the first element has a flared distal region with a lumen therethrough, and wherein the lumen of the flared distal region is configured to receive the sidewall therein as the treatment device is moved through the across the gap.
    • 14. The device of any one of Clauses 1-13, wherein the treatment device is a clot retrieving device.
    • 15. The device of any one of Clauses 1-14, wherein the device is configured to be detachably coupled to a handle of a catheter, thereby placing the second channel in fluid communication with a lumen of the catheter.
    • 16. A system for sheathing a treatment device having an elongated member and a first element and a second element at a distal region of the elongated member, wherein the device comprises:
      • a sheath configured to receive the treatment device in a constrained state therethrough;
      • a first channel extending to a first opening and configured to receive at least a portion of the sheath; and
      • a second channel extending to a second opening, the second opening surrounded by a sidewall and configured to receive the treatment device in the constrained state therethrough, wherein the second opening is spaced apart from the first opening by a gap, and wherein a length of the gap is great enough to allow the first element to self-expand over the sidewall while the second element generally maintains its diameter in the constrained state while crossing the gap.
    • 17. The system of Clause 16, further comprising a fluid port coupled to a proximal end portion of the sheath.
    • 18. The system of Clause 16 or Clause 17, wherein the sheath is a first sheath and the system further comprises a second sheath configured to receive the treatment device in a constrained state therethrough, and wherein the second channel is configured to receive at least a portion of the second sheath therein.
    • 19. The system of Clause 18, further comprising a catheter, and wherein the second sheath is configured to be coupled to the catheter.
    • 20. A system for sheathing a treatment device having an elongated member and a first element and a second element at a distal region of the elongated member, wherein the device comprises:
      • a sheath configured to receive the treatment device in a constrained state therethrough;
      • a sheathing tool comprising:
        • a first channel extending to a first opening and configured to receive at least a portion of the sheath, and
        • a second channel extending to a second opening, the second opening surrounded by a sidewall and configured to receive the treatment device in the constrained state therethrough, wherein the second opening is spaced apart from the first opening by a gap, and wherein a length of the gap is great enough to allow the first element to self-expand over the sidewall while the second element generally maintains its diameter in the constrained state while crossing the gap;
      • a housing configured to be detachably coupled to the sheath and the sheathing tool, wherein a majority of the length of the sheath is contained within a perimeter of the housing such that a user may position manipulate both ends of the sheath and/or treatment device without taking a step.
    • 21. The system of Clause 20, wherein the sheath is a first sheath and the system further comprises a second sheath configured to receive the treatment device in a constrained state therethrough, and wherein the second channel is configured to receive at least a portion of the second sheath therein.
    • 22. The system of Clause 21, further comprising a catheter, and wherein the second sheath is configured to be coupled to the catheter.
    • 23. A method for sheathing a treatment device having an elongated member and a first element and a second element at a distal region of the elongated member, the method comprising:
      • positioning the treatment device in a first channel with the first and second elements in a constrained state;
      • moving the treatment device from a first opening of the first channel through a second opening of a second channel spaced apart from the first opening by a gap; and
      • while moving the treatment device across the gap, generally maintaining a cross-sectional dimension of the first element at its cross-sectional dimension in the constrained state while allowing the second element to expand over a sidewall surrounding the second opening.
    • 24. The method of Clause 23, further comprising moving a portion of the second element in a first direction through the second channel while moving a second portion of the second element in a second direction opposite the first direction outside of the channel.
    • 25. The method of Clause 23 or Clause 24, further comprising moving the treatment device along the first channel in a first direction, and wherein moving the treatment device from the first opening and through the second opening is in a second direction opposite the first direction.
    • 26. The method of any one of Clauses 23-25, wherein moving the treatment device from the first opening and through the second opening in the second direction occurs after moving the treatment device along the first channel in the first direction.
    • 27. The method of any one of Clauses 23-26, further comprising moving the treatment device along the second channel in a first direction, and wherein moving the treatment device from the first opening and through the second opening is in a second direction opposite the first direction.
    • 28. The method of Clause 27, wherein moving the treatment device from the first opening and through the second opening in the second direction occurs after moving the treatment device along the second channel in the first direction.
    • 29. The method of any one of Clauses 23-28, wherein the constrained state is a first constrained state and the treatment device is movable to a second constrained state in which the second element is inverted relative to its position when the treatment device is in a first constrained state.
    • 30. The method of Clause 29, further comprising inverting the second element by moving the first element through the second channel while the second element surrounds the sidewall.
    • 31. The method of Clause 29 or Clause 30, further comprising moving the treatment device in the second constrained state through the second channel.
    • 32. The method of any one of Clauses 29-31, further comprising moving the treatment device in the second constrained state through the second channel and into a catheter.
    • 33. The method of any one of Clauses 23-32, further comprising decreasing a length of the gap before moving the treatment device through the first opening.
    • 34. The method of any one of Clauses 23-33, further comprising decreasing a length of the gap after moving the treatment device across a portion of the gap.
    • 35. The method of any one of Clauses 23-34, further comprising removing the treatment device from a catheter before positioning the first and second elements in the first channel.
    • 36. The method of Clause 35, further comprising removing clot material from the treatment device before positioning the first and second elements in the first channel.
    • 37 The method of Clause 36, wherein removing clot material includes rinsing clot material from the treatment device.
    • 38. The method of Clause 35, further comprising removing clot material from the treatment device while at least a portion of the elongated member is positioned within the first channel but before positioning the first and second elements in the first channel.
    • 39. The method of Clause 38, wherein removing clot material includes rinsing clot material from the treatment device.
    • 40. A device for transferring an intravascular treatment device from a first sheath to a second sheath, the treatment device including first and second self-expanding elements, wherein each of the first and second sheaths is sized such that the treatment device is constrained in a compressed state when positioned within each of the first and second sheaths, and wherein the device comprises:
      • a first channel configured to receive at least a portion of the first sheath therein, the first channel having a first proximal opening configured to receive the first sheath therethrough and a first distal opening; and
      • a second channel configured to receive at least a portion of the second sheath therein, the second channel having a second proximal opening and a second distal opening configured to receive the second sheath therethrough,
      • wherein the device is configured to securely position the first and second channels relative to one another such that the first distal opening is aligned with the second proximal opening and spaced apart from the second proximal opening by a gap, the gap having a length such that, when the first and second sheaths are positioned within the first and second channels, respectively, and the treatment device is moved from the first sheath to the second sheath across the gap, a distal region of the first element expands from the compressed state within the gap while the second element generally maintains its diameter in the compressed state while crossing the gap.
    • 41. The device of Clause 40, wherein the second channel is surrounded by a sidewall having an outer diameter, and wherein the distal region of the first element expands over the outer diameter of the sidewall as it crosses the gap.
    • 42. The device of Clause 40 or Clause 41, wherein an inner diameter of the second channel tapers distally from the second proximal opening.
    • 43. The device of any one of Clauses 40-42, wherein the second channel is surrounded by a sidewall having an outer diameter that increases distally from the second proximal opening.
    • 44. The device of any one of Clauses 40-43, wherein the first and second channels are fixed relative to one another.
    • 45. The device of any one of Clauses 40-44, wherein the first and second channels are movable relative to one another.
    • 46. The device of any one of Clauses 40-45, wherein the length is a first length, and wherein the device is configured to securely position the first and second channels relative to one another such that the gap has a second length greater than the first length.
    • 47. A sheathing tool, comprising:
      • a support;
      • a loading member coupled to the support and having a first distal opening, a first proximal opening, and a first channel extending therebetween, wherein the first proximal opening is configured to receive a first sheath therethrough; and
      • a receiving member coupled to the support and having a second distal opening, a second proximal opening, and a second channel extending therebetween, wherein the second distal opening is configured to receive a second sheath therethrough,
      • wherein the support is configured to securely position the loading member and the receiving member relative to one another such that the first distal opening is aligned with the second proximal opening and spaced apart from the second proximal opening by a gap, the gap having a length such that, when the first and second sheaths are positioned within the first and second channels, respectively, and a self-expanding treatment device is moved in a compressed state from a lumen of the first sheath to a lumen of the second sheath across the gap, a distal portion of the treatment device maintains its diameter in the compressed state between the first distal opening and the second proximal opening.


Additional features and advantages of the subject technology are described below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.



FIG. 1 is a schematic overview of a treatment system configured in accordance with the present technology.



FIG. 2 is a side view of a distal portion of the treatment device shown in FIG. 1 in a second position in accordance with embodiments of the present technology.



FIG. 3A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology.



FIG. 3B is an isometric view of the sheathing tool of FIG. 3A in a second position configured in accordance with the present technology.



FIG. 3C is a top view of the sheathing tool in the first position, as shown in FIG. 3A.



FIG. 3D is a top view of the sheathing tool in the second position, as shown in FIG. 3B.



FIG. 3E is an enlarged, isolated, cross-sectional view of the first channel shown in FIGS. 3A-3D.



FIG. 3F is an enlarged, isolated view, cross-sectional view of the second channel shown in FIGS. 3A-3D.



FIGS. 4A-4H illustrate a method of using a sheathing tool to sheath a treatment device.



FIGS. 5A and 5B are an isometric view and a top cross-sectional view, respectively, of a sheathing tool shown in a first position configured in accordance with some embodiments of the present technology.



FIGS. 5C and 5D are an isometric view and a top cross-sectional view, respectively, of the sheathing tool shown in FIGS. 5A and 5B in a second position configured in accordance with some embodiments of the present technology.



FIGS. 6A and 6B are a top view and a side cross-sectional view, respectively, of a sheathing tool shown in a first position configured in accordance with some embodiments of the present technology.



FIG. 7A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology.



FIG. 7B is an isometric view of the sheathing tool of FIG. 7A in a second position configured in accordance with the present technology.



FIG. 7C is a side cross-sectional view of the sheathing tool as shown in FIG. 7B.



FIG. 7D is an isometric view of the connector of the sheathing tool shown in FIGS. 7A-7C.



FIG. 8A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology.



FIG. 8B is a side cross-sectional view of the sheathing tool of FIG. 8A in a second position configured in accordance with the present technology.



FIG. 8C is an isometric view of the connector of the sheathing tool shown in FIGS. 8A and 8B.



FIG. 9A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology.



FIG. 9B is an isometric view of the sheathing tool of FIG. 7A in a second position configured in accordance with the present technology.





DETAILED DESCRIPTION

The present technology provides devices, systems, and methods for sheathing and/or re-sheathing an intravascularly deliverable treatment device. Although many of the embodiments are described below with respect to devices, systems, and methods for removing clot material/treating embolism (such as a cerebral embolism), the sheathing tools of the present technology may be used to re-sheath any intravascularly deliverable, expandable treatment device. Other applications and other embodiments in addition to those described herein are within the scope of the technology. For example, the sheathing tools of the present technology may be used with devices for removing emboli from body lumens other than blood vessels (e.g., the digestive tract, etc.) and/or may be used to remove emboli from blood vessels outside of the brain (e.g., pulmonary blood vessels, blood vessels within the legs, etc.). In addition, the sheathing tools of the present technology may be used with devices for removing luminal obstructions other than clot material (e.g., plaque, resected tissue, etc.).


1. System Overview


FIG. 1 is a schematic representation of a system 1 (“system 1”) configured in accordance with the present technology. As shown in FIG. 1, the system 1 may include a treatment device 10 (shown in an expanded, unconstrained state), a catheter 100 (e.g., a microcatheter), a sheathing tool 200 (shown schematically), a support 300, and a sheath 19 for facilitating introduction of the treatment device 10 to the catheter 100 and/or sheathing tool 200. The catheter 100 may include a handle 102 and an elongated shaft 104 having a proximal portion 104a coupled to the handle 102 and a distal portion 104b configured to be positioned at a treatment site within a blood vessel lumen (e.g., a cerebral blood vessel lumen). The elongated shaft 104 is configured to slidably receive the treatment device 10 in a low-profile, constrained state (not shown) therethrough.


The sheath 19 may be configured to be detachably coupled to the catheter 100, the sheathing tool 200, and/or the support 300 and is configured to slidably receive the treatment device 10 in a low-profile, constrained state (not shown) therethrough. In some embodiments, such as the embodiment shown in FIG. 1, the sheath 19 may include a first segment 31 and a second segment 33. The first segment 31 may have a proximal portion 31a and a distal portion 31b configured to be detachably coupled to the sheathing tool 200, and the second segment 33 may have a proximal portion 33a configured to be detachably coupled to the sheathing tool 200 and a distal portion 33b configured to be detachably coupled to the handle 108 of the catheter 100, thereby creating a pathway between the lumen of the second segment and the lumen of the elongated shaft 104.


As shown in FIG. 1, the sheathing tool 200 and/or one or more portions of the sheath 19 may be configured to be detachably or permanently coupled to the support 300. For example, to secure the sheathing tool 200 and/or the sheath 19 to the support 300, the support 300 may include one or more tabs, slots, protrusions or other means 302 for engaging the sheath 19 and/or the sheathing tool 200 and/or one or more corresponding tabs, protrusions, slots, etc. on the sheath 19 and/or the sheathing tool 200. In some embodiments, the system 1 may be packaged with one or both of the sheathing tool 200 and the sheath 31 detachably or permanently mounted on the support 300.


In some embodiments, the treatment device 10 includes an elongated member 12 and a treatment assembly 14 coupled to a distal region of the elongated member 12. The treatment assembly 14 may be configured to be intravascularly positioned at or adjacent clot material within a blood vessel lumen and includes a first element 17 and a second element 15. In some embodiments, the first element 17 may be a self-expanding stent 17 (e.g., a laser-cut stent) and the second element 15 may be a self-expanding mesh (e.g., a braid, a weave, a lattice structure, a fabric, etc.). In some embodiments, the first and second elements 17, 15 may have other suitable configurations.


The first element 17 may have a proximal portion 17a coupled to the elongated member 12 and a distal portion 17b, and the second element 15 may have a free end portion 15b and a fixed end portion 15a coupled to the elongated member 12. The second element 15 may be flexible such that it is movable between a first position (FIG. 1) in which its free end portion 15b is proximal of its fixed end portion 15a, and a second position (see FIG. 2) in which the second element 15 is inverted over the first element 17 such that a distal terminus of the second element 15 is at or distal to the distal terminus of the first element 17. As shown in FIG. 2, when the second element 15 is in the second position, the free end portion 15b is distal of the fixed end portion 15a and distal of the distal terminus of the first element 17. In the second position, the second element 15 may have a flared distal region 25 that surround a lumen 27 therethrough.


Examples of suitable treatment devices 10 for use with the system 1 can be found in U.S. patent application Ser. No. 15/594,410, filed May 12, 2017, which is incorporated by reference herein in its entirety. Although the sheathing tools discussed below are described with reference to the treatment device 10 shown in FIGS. 1 and 2, the sheathing tools disclosed herein may be utilized to sheath or re-sheath any expandable treatment device deliverable through a catheter.


2. Selected Embodiments of Sheathing Tools and Associated Methods of Use


FIGS. 3A and 3C are an isometric view and a top view of a sheathing tool 200, respectively, in a first position configured in accordance with embodiments of the present technology. FIGS. 3B and 3D are an isometric view and a top view of the sheathing tool 200, respectively, in a second position configured in accordance with embodiments of the present technology. Referring to FIGS. 3A-3D together, the sheathing tool 200 may include a housing 202 having a first portion 212 and a second portion 222 slidably coupled to the first portion 212. The first portion 212 may include a first protrusion 210 and first arms 211 extending distally beyond the first protrusion 210, and the second portion 222 may include a second protrusion 220 and second arms 221 extending proximally beyond the second protrusion 220. The first and second arms 211, 221 can be coupled along at least a portion of their lengths and together surround an open interior region 208 of the housing 202 into which the first and second protrusions 210, 220 extend. As such, the first and second protrusions 210, 220 are spaced apart from the adjacent first and second arms 211, 221. In some embodiments, the first protrusion 210 is not spaced apart from the adjacent first arms 211.



FIG. 3E is an enlarged, isolated, cross-sectional view of a distal region of the first protrusion 210. As shown in FIG. 3E, the first protrusion 210 may include a first channel 216 extending distally from a proximal region of the proximal portion 212 of the housing 202 to a first opening 214. In some embodiments the first channel 216 may be configured to receive the treatment device 10 in a constrained state therethrough, and in some embodiments the first channel 216 may be configured to receive the sheath 19. In FIG. 3E, for example, the first sheath segment 31 is shown positioned within the first channel 216. The first channel 216 may be surrounded by a generally tubular sidewall having an outer diameter OD1 that tapers in a distal direction. An inner diameter ID1 of the first channel 216 may taper distally to help guide the first element 17 in a generally constrained state towards the second opening 224.



FIG. 3F is an enlarged, isolated, cross-sectional view of a proximal region of the second protrusion 220. As shown in FIG. 3E, the second protrusion 220 may include a second channel 226 extending proximally from a distal region of the distal portion 222 of the housing 202 to a second opening 224. In some embodiments the second channel 226 may be configured to receive the treatment device 10 in a constrained state therethrough, and in some embodiments the second channel 226 may be configured to receive the sheath 19. In FIG. 3F, for example, the second sheath segment 33 is shown positioned within the second channel 226. The second channel 226 may be surrounded by a generally tubular sidewall having an outer diameter OD2 that tapers in a proximal direction to facilitate positioning the second element 15 over the second protrusion 220. In some embodiments, an inner diameter ID2 of the second channel 216 may taper distally to help guide and/or deflect the first element 17 into the second channel 226 and/or the second sheath segment 33.


When the sheathing tool 200 is in a first position, the first and second openings 214, 224 are spaced apart by a gap g having a first length, and when the sheathing tool 200 is in a second position, the first and second openings 214, 224 are spaced apart by a gap g having a second length less than the first length. The second length may be great enough to allow the second element 15 to self-expand such that the second element 15 is positioned over the sidewall while the first element 17 generally maintains its diameter in the constrained state while crossing the gap g. In other words, because the first element 17 does not have enough space between the first and second openings 214, 224 to expand, the first element 17 crosses the gap g in a constrained state which allows the first element 17 to enter through the second opening 224. If the gap g is too long, the distal ends of the first element 17 may begin to expand/splay outwardly and prevent the first element 17 from entering the second channel 226. Likewise, if the gap g is too short, the second element 15 may not have enough room for the distal portion 15b to flare radially outwardly to an extent that allows the second element 15 to extend over the second protrusion 222 and/or receive the second protrusion 222 within the lumen 27 (FIG. 2) of the distal region 15b.



FIGS. 4A-4H illustrate a method of using the sheathing tool 200 to sheath and/or re-sheath the treatment device 10. As shown in FIG. 4A, in some embodiments the treatment device 10 may first be withdrawn proximally from a treatment site through the blood vessel V lumen and catheter 100. Once removed from the catheter 100, the treatment device 10 may be in an expanded, unconstrained state in the second position such that the second element 15 is inverted over the first element 17. As shown in FIG. 4B, the treatment device 10 in the second position may then be pulled proximally through the second sheath segment 33, then the sheathing tool 200, and into the first sheath segment 31. For example, a proximal end of the elongated member 12 may be inserted into an opening at the distal portion 33b of the second segment 33, and the rest of the elongated member 12 may be pushed proximally through the second sheath segment 33, the sheathing tool 200, and at least a portion of the first sheath segment 31 (and/or pulled once the proximal end of the elongated member 12 exits a proximal portion 31a of the first sheath segment 31). Once a distal portion of the treatment device 10 is aligned with or proximal of the first opening 214, the elongated member 12 may then be pushed distally, thereby advancing the first and second elements 17, 15 across the gap g, as shown in FIG. 4C. While moving the treatment device 10 across the gap, the first element 17 may maintain its cross-sectional dimension in the constrained state while the second element 15 expands over the sidewall surrounding the second opening 224. (In FIG. 4C, the first and second elements 17, 15 are shown in cross-section for ease of viewing the treatment device 10 within the gap g.) In some embodiments, the first element 17 may be advanced across the gap g and into the second opening 224 while the sheathing tool 200 is in the first position. In some embodiments, the first element 17 may only be advanced across a portion of the gap g (and not into the second opening 224) while the sheathing tool 200 remains in the first position.


As shown in FIG. 4D, the first portion 212 of the housing 202 may be moved towards the second portion 222 of the housing 202 and secured in place by one or more detents and/or other securement features of the housing 202. Moving the first and second openings towards one another forces the second protrusion 220 further within the lumen of the second element 15. As shown in FIGS. 4E and 4F, the elongated member 12 can be pushed proximally while the sheathing tool 200 is in the second position, thereby advancing the first element 17 further within the second channel 126 and/or second sheath segment 33. As the elongated member 12 is advanced distally, the second element 15 extends further distally along the second protrusion 220 until it's fixed end portion pulls the second element 15 into the second channel 226. As such, a portion of the second element may move in a first direction through the second channel while a second portion of the second element moves in a second direction opposite the first direction outside of the second channel 226. As shown in FIG. 4G, the second sheath segment 33 may then be coupled to the catheter 100. As shown in FIG. 4H, the elongated member 12 may be pushed proximally to transfer the treatment device 10 in the first position from the second sheath segment 33 to the catheter 100.



FIGS. 5A and 5B are an isometric view and a top cross-sectional view, respectively, of a sheathing tool shown in a first position configured in accordance with some embodiments of the present technology. FIGS. 5C and 5D are an isometric view and a top cross-sectional view, respectively, of the sheathing tool shown in FIGS. 5A and 5B in a second position configured in accordance with some embodiments of the present technology.



FIGS. 6A and 6B are a top view and a side cross-sectional view, respectively, of a sheathing tool 600 shown in a first position configured in accordance with some embodiments of the present technology. In some embodiments, such as that shown in FIGS. 6A and 6B, the housing 202 may be a single component and/or the first and second openings are spaced apart by a fixed distance.



FIG. 7A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology. FIG. 7B is an isometric view of the sheathing tool of FIG. 7A in a second position configured in accordance with the present technology FIG. 7C is a side cross-sectional view of the sheathing tool as shown in FIG. 7B. FIG. 7D is an isometric view of the connector of the sheathing tool shown in FIGS. 7A-7C.



FIG. 8A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology. FIG. 8B is a side cross-sectional view of the sheathing tool of FIG. 8A in a second position configured in accordance with the present technology. FIG. 8C is an isometric view of the connector of the sheathing tool shown in FIGS. 8A and 8B.



FIG. 9A is an isometric view of a sheathing tool in a first position configured in accordance with the present technology. FIG. 9B is an isometric view of the sheathing tool of FIG. 7A in a second position configured in accordance with the present technology.


3. Conclusion

This disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and functions have not been shown and/or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, in alternative embodiments the steps may have another suitable order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the present technology. Accordingly, this disclosure and associated technology can encompass other embodiments not expressly shown and/or described herein.


Throughout this disclosure, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the terms “comprising” and the like are used throughout this disclosure to mean including at least the recited feature(s) such that any greater number of the same feature(s) and/or one or more additional types of features are not precluded. Directional terms, such as “upper,” “lower,” “front,” “back,” “vertical,” and “horizontal,” may be used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation. Reference herein to “one embodiment,” “an embodiment,” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.

Claims
  • 1. A system comprising: a treatment device having an elongated member, and a first element and a second element at a distal region of the elongate member; and a device for sheathing the treatment device, the device comprising: a first channel extending to a first opening, the first channel configured to receive the treatment device in a constrained state therethrough; and a second channel extending to a second opening, the second opening surrounded by a sidewall and configured to receive the treatment device in the constrained state therethrough, wherein the second opening is spaced apart from the first opening by a gap, and wherein a length of the gap is great enough to allow the first element to self-expand over the sidewall while the second element generally maintains its diameter in the constrained state while crossing the gap.
  • 2. The system of claim 1, wherein an inner diameter of the second channel tapers distally from the second opening.
  • 3. The system of claim 1, wherein an outer diameter of the sidewall increases distally from the second opening.
  • 4. The system of claim 1, wherein the first and second openings are fixed relative to one another such that the length of the gap is fixed.
  • 5. The system of claim 1, wherein the first and second openings are movable relative to one another such that the length of the gap is adjustable.
  • 6. The system of claim 1, wherein the first channel is within a first housing and the second channel is within a second housing movable relative to the first housing, and wherein the first housing has a detent configured to receive a protrusion of the second housing, or vice versa, such that the first housing is locked in place relative to the second housing.
  • 7. The system of claim 1, wherein the first channel is configured to receive a sheath therethrough, wherein the sheath is configured to slidably receive the treatment device therein in the constrained state.
  • 8. The system of claim 1, wherein the second channel is configured to receive a sheath therethrough, and wherein the sheath is configured to slidably receive the treatment device therein in the constrained state.
  • 9. The system of claim 1, wherein the first element is a self-expanding element.
  • 10. The system of claim 1, wherein the second element is a self-expanding element.
  • 11. The system of claim 1, wherein the first element is a mesh.
  • 12. The system of claim 1, wherein the second element is a stent.
  • 13. The system of claim 1, wherein, in an expanded state, the first element has a flared distal region with a lumen therethrough, and wherein the lumen of the flared distal region is configured to receive the sidewall therein as the treatment device is moved across the gap.
  • 14. The system of claim 1, wherein the treatment device is a clot retrieving device.
  • 15. The system of claim 1, wherein the device is configured to be detachably coupled to a handle of a catheter, thereby placing the second channel in fluid communication with a lumen of the catheter.
US Referenced Citations (345)
Number Name Date Kind
2918919 Wallace Dec 1959 A
2943626 Dormia Jul 1960 A
3996938 Clark, III Dec 1976 A
4347646 Dormia Sep 1982 A
4611594 Grayhack et al. Sep 1986 A
4650466 Luther Mar 1987 A
4657020 Lifton Apr 1987 A
4699147 Chilson et al. Oct 1987 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4807626 McGirr Feb 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4969891 Gewertz Nov 1990 A
4998539 Delsanti Mar 1991 A
5034001 Garrison et al. Jul 1991 A
5057114 Wittich et al. Oct 1991 A
5059178 Ya Oct 1991 A
5102415 Guenther et al. Apr 1992 A
5147400 Kaplan et al. Sep 1992 A
5152777 Goldberg et al. Oct 1992 A
5192286 Phan et al. Mar 1993 A
5300086 Gory et al. Apr 1994 A
5329942 Gunther et al. Jul 1994 A
5443478 Purdy Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5458375 Anspach, Jr. et al. Oct 1995 A
5490859 Mische et al. Feb 1996 A
5496330 Bates et al. Mar 1996 A
5509900 Kirkman Apr 1996 A
5653684 Laptewicz et al. Aug 1997 A
5658296 Bates et al. Aug 1997 A
5709704 Nott et al. Jan 1998 A
5733302 Myler et al. Mar 1998 A
5741325 Chaikof et al. Apr 1998 A
5792156 Perouse Aug 1998 A
5827324 Cassell et al. Oct 1998 A
5846251 Hart Dec 1998 A
5895398 Wensel et al. Apr 1999 A
5911710 Barry Jun 1999 A
5941869 Patterson et al. Aug 1999 A
5947995 Samuels Sep 1999 A
5968090 Ratcliff et al. Oct 1999 A
5971938 Hart et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6033394 Vidlund et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6053932 Daniel et al. Apr 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6096053 Bates Aug 2000 A
6099534 Bates et al. Aug 2000 A
6146403 St. Germain Nov 2000 A
6159220 Gobron et al. Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168603 Leslie et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6176873 Ouchi Jan 2001 B1
6190394 Lind et al. Feb 2001 B1
6217609 Haverkost Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6248113 Fina Jun 2001 B1
6264664 Avellanet Jul 2001 B1
6302895 Gobron et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6348056 Bates et al. Feb 2002 B1
6350266 White et al. Feb 2002 B1
6364895 Greenhalgh Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383196 Leslie et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416505 Fleischman et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6436112 Wensel et al. Aug 2002 B2
6443972 Bosma et al. Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6485497 Wensel et al. Nov 2002 B2
6494884 Gifford, III et al. Dec 2002 B2
6506204 Mazzocchi Jan 2003 B2
6514273 Voss et al. Feb 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540657 Cross, III et al. Apr 2003 B2
6540768 Diaz et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6585753 Eder et al. Jul 2003 B2
6592605 Lenker et al. Jul 2003 B2
6592607 Palmer et al. Jul 2003 B1
6602271 Adams et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6620148 Tsugita Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6638245 Miller et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6652505 Tsugita Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6673042 Samson et al. Jan 2004 B1
6679893 Tran Jan 2004 B1
6685738 Chouinard et al. Feb 2004 B2
6692508 Wensel et al. Feb 2004 B2
6692509 Wensel et al. Feb 2004 B2
6695858 Dubrul et al. Feb 2004 B1
6702782 Miller et al. Mar 2004 B2
6730104 Sepetka et al. May 2004 B1
6745080 Koblish Jun 2004 B2
6746468 Sepetka et al. Jun 2004 B1
6749619 Ouriel et al. Jun 2004 B2
6755813 Ouriel et al. Jun 2004 B2
6800080 Bates Oct 2004 B1
6824545 Sepetka et al. Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6872211 White et al. Mar 2005 B2
6872216 Daniel et al. Mar 2005 B2
6890341 Dieck et al. May 2005 B2
6893431 Naimark et al. May 2005 B2
6905503 Gifford, III et al. Jun 2005 B2
6913612 Palmer et al. Jul 2005 B2
6936059 Belef Aug 2005 B2
6939362 Boyle et al. Sep 2005 B2
6945977 Demarais et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6964672 Brady et al. Nov 2005 B2
7004955 Shen et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7037320 Brady et al. May 2006 B2
7041126 Shin et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7058456 Pierce Jun 2006 B2
7097653 Freudenthal et al. Aug 2006 B2
7101380 Khachin et al. Sep 2006 B2
7169165 Belef et al. Jan 2007 B2
7179273 Palmer et al. Feb 2007 B1
7182771 Houser et al. Feb 2007 B1
7235061 Tsugita Jun 2007 B2
7240516 Pryor Jul 2007 B2
7399308 Borillo et al. Jul 2008 B2
7534252 Sepetka et al. May 2009 B2
7578830 Kusleika et al. Aug 2009 B2
7621870 Berrada et al. Nov 2009 B2
7837702 Bates Nov 2010 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8105333 Sepetka et al. Jan 2012 B2
8197493 Ferrera et al. Jun 2012 B2
8603014 Alleman et al. Dec 2013 B2
8837800 Bammer et al. Sep 2014 B1
9119656 Bose et al. Sep 2015 B2
9126018 Garrison Sep 2015 B1
9211132 Bowman Dec 2015 B2
9241699 Kume et al. Jan 2016 B1
9265512 Garrison et al. Feb 2016 B2
9308007 Cully et al. Apr 2016 B2
9399118 Kume et al. Jul 2016 B2
9445828 Turjman et al. Sep 2016 B2
9445829 Brady et al. Sep 2016 B2
9492637 Garrison et al. Nov 2016 B2
9539022 Bowman Jan 2017 B2
9561345 Garrison et al. Feb 2017 B2
9579119 Cully et al. Feb 2017 B2
9585741 Ma Mar 2017 B2
9642635 Vale et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9737318 Monstadt et al. Aug 2017 B2
9770251 Bowman et al. Sep 2017 B2
9801643 Hansen et al. Oct 2017 B2
9861783 Garrison et al. Jan 2018 B2
9993257 Losordo et al. Jun 2018 B2
10028782 Orion Jul 2018 B2
10029008 Creighton Jul 2018 B2
10039906 Kume et al. Aug 2018 B2
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020004667 Adams et al. Jan 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020058904 Boock et al. May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020123765 Sepetka et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020151928 Leslie et al. Oct 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20030004542 Wensel et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030050663 Khachin et al. Mar 2003 A1
20030060782 Bose et al. Mar 2003 A1
20030093087 Jones et al. May 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030153935 Mialhe Aug 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195556 Stack et al. Oct 2003 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040079429 Miller et al. Apr 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040153025 Seifert et al. Aug 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040172056 Guterman et al. Sep 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040199243 Yodfat Oct 2004 A1
20040210116 Nakao Oct 2004 A1
20040267301 Boylan et al. Dec 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050033348 Sepetka et al. Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050043680 Segal et al. Feb 2005 A1
20050043756 Lavelle et al. Feb 2005 A1
20050049619 Sepetka et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka et al. Mar 2005 A1
20050080356 Dapolito et al. Apr 2005 A1
20050085826 Nair et al. Apr 2005 A1
20050085847 Galdonik et al. Apr 2005 A1
20050085849 Sepetka et al. Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050090858 Pavlovic Apr 2005 A1
20050125024 Sepetka et al. Jun 2005 A1
20050131450 Nicholson et al. Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050203571 Mazzocchi et al. Sep 2005 A1
20050209609 Wallace Sep 2005 A1
20050216030 Sepetka et al. Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050234501 Barone Oct 2005 A1
20050234505 Diaz et al. Oct 2005 A1
20050277978 Greenhalgh Dec 2005 A1
20050283166 Greenhalgh Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20060004404 Khachin et al. Jan 2006 A1
20060009784 Behl et al. Jan 2006 A1
20060030925 Pryor Feb 2006 A1
20060047286 West Mar 2006 A1
20060058836 Bose et al. Mar 2006 A1
20060058837 Bose et al. Mar 2006 A1
20060058838 Bose et al. Mar 2006 A1
20060095070 Gilson et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060129180 Tsugita et al. Jun 2006 A1
20060155305 Freudenthal et al. Jul 2006 A1
20060190070 Dieck et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060253145 Lucas Nov 2006 A1
20060271153 Garcia et al. Nov 2006 A1
20060276805 Yu Dec 2006 A1
20060282111 Morsi Dec 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070112374 Paul et al. May 2007 A1
20070116165 DeMello et al. May 2007 A1
20070149996 Coughlin Jun 2007 A1
20070185500 Martin et al. Aug 2007 A1
20070185501 Martin et al. Aug 2007 A1
20070197103 Martin et al. Aug 2007 A1
20070198029 Martin et al. Aug 2007 A1
20070198030 Martin et al. Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070225749 Martin et al. Sep 2007 A1
20070233236 Pryor Oct 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20080109031 Sepetka et al. May 2008 A1
20080183198 Sepetka et al. Jul 2008 A1
20080188885 Sepetka et al. Aug 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20090069828 Martin et al. Mar 2009 A1
20090105722 Fulkerson et al. Apr 2009 A1
20090105737 Fulkerson et al. Apr 2009 A1
20090125053 Ferrera et al. May 2009 A1
20090192518 Golden et al. Jul 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20100076452 Sepetka et al. Mar 2010 A1
20100100106 Ferrera Apr 2010 A1
20100174309 Fulkerson et al. Jul 2010 A1
20100185210 Hauser et al. Jul 2010 A1
20100217187 Fulkerson et al. Aug 2010 A1
20100256600 Ferrera Oct 2010 A1
20100318097 Ferrera et al. Dec 2010 A1
20110160742 Ferrera et al. Jun 2011 A1
20110160757 Ferrera et al. Jun 2011 A1
20110160760 Ferrera et al. Jun 2011 A1
20110160761 Ferrera et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110288572 Martin Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120143230 Sepetka et al. Jun 2012 A1
20120197285 Martin et al. Aug 2012 A1
20130030461 Marks et al. Jan 2013 A1
20130281788 Garrison Oct 2013 A1
20140276074 Warner Sep 2014 A1
20140343595 Monstadt et al. Nov 2014 A1
20150359547 Vale et al. Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160015935 Chan et al. Jan 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160151618 Powers et al. Jun 2016 A1
20160157985 Vo et al. Jun 2016 A1
20160199620 Pokorney et al. Jul 2016 A1
20160296690 Kume et al. Oct 2016 A1
20160302808 Loganathan et al. Oct 2016 A1
20160354098 Martin et al. Dec 2016 A1
20160375180 Anzai Dec 2016 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170100143 Grandfield Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170164963 Goyal Jun 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170290599 Youn et al. Oct 2017 A1
20180049762 Seip et al. Feb 2018 A1
20180084982 Yamashita et al. Mar 2018 A1
20180116717 Taff et al. May 2018 A1
20180132876 Zaidat May 2018 A1
20180140314 Goyal et al. May 2018 A1
20180140315 Bowman et al. May 2018 A1
20180140354 Lam et al. May 2018 A1
20180185614 Garrison et al. Jul 2018 A1
Foreign Referenced Citations (56)
Number Date Country
1640505 Jul 2005 CN
102036611 Apr 2011 CN
3501707 Jul 1986 DE
200668 Nov 1986 EP
1312314 May 2003 EP
2319575 Nov 2013 EP
2002537943 Nov 2002 JP
2007-522881 Aug 2007 JP
2007252951 Oct 2007 JP
2011508635 Mar 2011 JP
2014004219 Jan 2014 JP
2018118132 Aug 2018 JP
20180102877 Sep 2018 KR
WO-9409845 May 1994 WO
WO-9509586 Apr 1995 WO
WO-9601591 Jan 1996 WO
WO-9617634 Jun 1996 WO
WO-9619941 Jul 1996 WO
WO-9727808 Aug 1997 WO
WO-9727893 Aug 1997 WO
WO-9803120 Jan 1998 WO
WO-0053120 Sep 2000 WO
WO-0072909 Dec 2000 WO
WO-0132254 May 2001 WO
WO-0154622 Aug 2001 WO
WO-0167967 Sep 2001 WO
WO-0202162 Jan 2002 WO
WO-0228291 Apr 2002 WO
WO-03000334 Jan 2003 WO
WO-03061730 Oct 2003 WO
WO-03089039 Oct 2003 WO
WO-2006031410 Mar 2006 WO
WO-2006122076 Nov 2006 WO
WO-2007092820 Aug 2007 WO
WO-2008036156 Mar 2008 WO
WO-2008036156 Mar 2008 WO
WO-2008131116 Oct 2008 WO
2008539958 Nov 2008 WO
WO-2009034456 Mar 2009 WO
WO-2009086482 Jul 2009 WO
WO-2011092383 Jul 2011 WO
WO-2011091383 Jul 2011 WO
WO-2012009675 Jan 2012 WO
WO-2012162437 Nov 2012 WO
WO-2013106146 Jul 2013 WO
2015141317 Sep 2015 WO
2017192999 Nov 2017 WO
2018019829 Feb 2018 WO
2018033401 Feb 2018 WO
2018046408 Mar 2018 WO
2018137029 Aug 2018 WO
2018137030 Aug 2018 WO
2018145212 Aug 2018 WO
2018156813 Aug 2018 WO
2018172891 Sep 2018 WO
2018187776 Oct 2018 WO
Related Publications (1)
Number Date Country
20180353196 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
62518586 Jun 2017 US