The present disclosure relates generally to rotational components, such as gears for example, and, more particularly, to methods and sensors for detecting rotational position of a gear, ring, wheel, flexplate, or other rotational component.
Rotational position sensing of a rotating component may be used in a variety of applications including, but not limited to, angular speed measurement, distance traveled calculation, and absolute position encoding of the rotational component relative to, for example, a fixed component such as a hub or axle. It may also be used to determine a relative position of a first rotating component relative to a second rotating component, whose angular position is also sensed. Further, rotational position sensing may be utilized in other applications, for example, torque sensing, or calculation of applied torque. Thus there remains a need for improved methods of rotational position sensing.
In one embodiment, a rotational position sensing device includes at least one sensor positioned adjacent a rotating component configured to rotate about an axis of rotation. At least one magnet is positioned at the rotating component such that a magnetic field of the at least one magnet affects the sensor and magnetizes a portion of the rotating component. The at least one sensor is configured to produce an output signal indicative of a magnetic flux, and therefore a position, of the rotating component.
Additionally or alternatively, in this or other embodiments the rotating component includes a plurality of teeth extending about an outer periphery of the rotating component.
Additionally or alternatively, in this or other embodiments the at least one sensor is arranged generally perpendicular to and axially aligned with the teeth of the rotating component.
Additionally or alternatively, in this or other embodiments a spacing between a plurality of adjacent sensors is substantially equal to a spacing between a tooth of the plurality of teeth of the rotating component and an adjacent valley.
Additionally or alternatively, in this or other embodiments at least one detector is positioned adjacent the rotating component.
Additionally or alternatively, in this or other embodiments the at least one detector is configured to synchronize a detection method with the teeth of the rotating component.
Additionally or alternatively, in this or other embodiments an axial and a vertical position of the at least one magnet relative to the at least one sensor varies based on a strength of the at least one magnet and a sensitivity of the at least one sensor.
Additionally or alternatively, in this or other embodiments a plurality of demagnetizing magnets is positioned about an outer periphery of the rotating component. The demagnetizing magnets are configured to make the rotating component generally magnetically uniform.
Additionally or alternatively, in this or other embodiments the plurality of demagnetizing magnets are positioned to have an alternating polarity to form an alternating current degaussing pattern.
Additionally or alternatively, in this or other embodiments the at least one sensor is a fluxgate sensor.
Additionally or alternatively, in this or other embodiments the at least one sensor is a fluxgate sensor configured as an inductive pickup.
Additionally or alternatively, in this or other embodiments the at least one sensor is an inductive pickup.
Additionally or alternatively, in this or other embodiments the rotating component is positioned axially between the at least one sensor and the at least one magnet.
Additionally or alternatively, in this or other embodiments the at least one sensor is positioned at a first circumferential end of the rotating component, and the at least one magnet is positioned substantially 180 degrees away from the at least one sensor.
In another embodiment, a method of sensing a position of a rotating component includes magnetizing a portion of a rotating component with a magnet and measuring a magnetic flux of the rotating component as it rotates about an axis of rotation. An output signal is generated that is indicative of the position of the rotating component.
Additionally or alternatively, in this or other embodiments the magnetic flux is measured using at least one sensor positioned adjacent the rotating component.
Additionally or alternatively, in this or other embodiments the at least one sensor is a fluxgate sensor.
Additionally or alternatively, in this or other embodiments the measured magnetic flux is amplified to produce an amplified output signal.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The disclosed subject matter is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, aspects, and advantages are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Detection of a tooth of a circular rotating component via a tooth sensing device 20 including fluxgate technology is generally improved by positioning a permanent magnet 25 in proximity to a fluxgate sensor 30 adjacent the rotating component 40 (see
In another embodiment, illustrated in
The output signal generated by a fluxgate sensor 30 may become saturated if certain portions of the rotating component 40 have a magnetic field. An exemplary fluxgate output signal, illustrated in
In another embodiment, the robustness of the fluxgate output signal may be improved by making the rotating component 40 substantially magnetically uniform. At least one demagnetizing magnet 50, as illustrated in
In another embodiment, an electronic detection circuit (not shown) including at least one detector 55 (see
The one or more fluxgate sensors 30 may be arranged in any of a number of orientations relative to the rotating component 40 and the shaft 35 supporting the rotating component 40. When the fluxgate sensor 30 is positioned at the side of the rotating component 40, the fluxgate sensor 30 is more sensitive to the magnetic state of the teeth 45 and the webbing at the center of the rotating component 40. In an embodiment, the fluxgate sensors 30 are arranged generally perpendicular to and axially aligned with the teeth 45 of the rotating component 40 (see
In an embodiment, the one or more fluxgate sensors 30 of the tooth sensing device 20 may be used as an inductive pickup configured to measure permeability rather than magnetic flux. Alternatively, the tooth sensing device 20 may use at least one fluxgate sensor 30 in a combined manner such that the electronic circuitry is configured to use a fluxgate sensor 30 exclusively as a fluxgate sensor, exclusively as an inductive pickup, or as a combination thereof. An exemplary circuit 60 configured to use an inductive pickup or a fluxgate sensor 30 configured as an inductive pickup is illustrated in
With reference now to
Referring now to
V=N*(dØ/dT)per Faraday's law. (1)
Where N is a number of turns in the coil, and
The voltage V is approximately a sinusoidal wave. The voltage V is then output to an amplifier, for example a differential amplifier as shown, or alternatively an instrumentation amplifier. At the amplifier, the voltage V is amplified by a selected gain factor and level shifted to be symmetric about Vdd/2. The voltage V remains sinusoidal in nature but has a greater amplitude than the pre-amplified voltage. It is then fed into a comparator with Vdd/2 as a threshold point. The comparator has a positive feedback resistor shown in
The resultant output Out+ is a ground referenced quasi square wave that is then fed into an electronic circuit where its phase is compared with another reference square wave of the same frequency. The core in the coil is a high permeability mu-metal alloy, e.g., a high magnetic permeability alloy such as an alloy of nickel, iron, copper, and chromium or molybdenum, that will saturate at some point causing a self limiting output voltage, unlike some variable reluctance sensors that have a linear, non-saturating core. The high permeability of the core material compared with other variable reluctance sensors allows for miniaturization of the detector and fewer turns of copper.
The fluxgate output signal from the one or more fluxgate sensors 30 of the tooth sensing device 20 may be used as an absolute position encoder such that the stopping position of the rotating component 40, such as a flexplate 40 of an engine for example, may be determined. The fluxgate output signal (or another tooth sensing method that does not require rotation to detect teeth 45) may be used to track the position of the teeth 45 as the rotating component 40 slows to a stop. Another input signal, such as a cam sensor signal for example, may be used to determine the position of the rotating component 40 within the engine cycle and once calibrated, each tooth 45 would be numbered and tracked as the engine stops. This information would be provided to a controller (not shown) or an engine control computer so that the absolute position of the shaft 35 supporting the rotating component 40 would be known. Such information would be useful, for example, for start-stop systems.
The tooth sensing device 20 and the method of sensing tooth position as described herein may be used for, but not limited to, angular speed measurement, distance traveled calculation, absolute position encoding, relative position encoding, and torque sensing. This is a more robust method of tooth sensing, as the system is less sensitive to the magnetic state of the flexplate (or alternatively the teeth of any toothed wheel).
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims. cm What is claimed is:
This application claims priority to U.S. provisional application 61/780,057 filed Mar. 13, 2013, the entire contents of which are incorporated herein by reference.
| Number | Date | Country | |
|---|---|---|---|
| 61780057 | Mar 2013 | US |