There are several different causes for gum and other oral cavity bleeding. Some of them are mechanical issues, such as excessive brushing force, using a toothbrush with stiff bristles, incorrect brushing or flossing mechanics, or improperly fitted dentures. Gum disease can also cause bleeding due to inflammation of gum tissues. Other important causes can be systemic, such as medications (e.g. blood thinners), pregnancy (hormonal changes), diabetes, vitamin deficiency (e.g. C or K), Leukemia, etc. Although the American Dental Association recommends that people with gum bleeding see a dentist or physician, a majority of the population do not feel pain when they have bleeding gums and therefore ignore this recommendation. Therefore, there is a need to provide consumers with a toothbrushing system that can monitor and/or log gum bleeding during routine tooth brushing.
The invention is directed to a system and/or method for detecting hemoglobin and/or blood in the oral cavity during toothbrushing, as well as to a toothbrush capable of doing the same.
In one aspect, the invention may be a system for detecting blood in an oral cavity during toothbrushing, the system comprising: a toothbrush comprising: a sensor configured to emit first light at a first wavelength and second light at a second wavelength, receive reflected portions of the first light and the second light, and generate a first signal indicative of a first intensity of the reflected portion of the first light and a second signal indicative of a second intensity of the reflected portion of the second light; and a power source operably coupled to the sensor to supply power to the sensor; and a processor operably coupled to the sensor and configured to receive the first and second signals and calculate a ratio of the first intensity to the second intensity to determine whether hemoglobin is present in the oral cavity.
In another aspect, the invention may be a method of detecting blood in an oral cavity during toothbrushing, the method comprising: brushing teeth and gums of the oral cavity with cleaning elements of a toothbrush during a toothbrushing session; emitting into the oral cavity, via a sensor of the toothbrush, first light at a first wavelength and second light at a second wavelength during the toothbrushing session; receiving, via the sensor of the toothbrush, a reflected portion of the first light and a reflected portion of the second light during the toothbrushing session; transmitting, from the sensor to a processor, a first signal indicative of a first intensity of the reflected portion of the first light and a second signal indicative of a second intensity of the reflected portion of the second light; and calculating, via the processor, a ratio of the first intensity of the first light to the second intensity of the second light to determine whether hemoglobin is present in the oral cavity during the toothbrushing session.
In yet another aspect, the invention may be a toothbrush comprising: a head having cleaning elements for cleaning oral cavity surfaces; a sensor comprising a first light source for emitting first light at a first wavelength, a second light source for emitting second light at a second wavelength, and a receiver for receiving reflected portions of the first and second light; a power source operably coupled to the sensor; and a processor operably coupled to the sensor to: (1) receive a first signal indicative of a first intensity of the reflected portion of the first light and a second signal indicative of a second intensity of the reflected portion of the second light; and (2) calculate a ratio of the first intensity to the second intensity to determine whether hemoglobin is present in the oral cavity.
In still another aspect, the invention may be a system for detecting blood in an oral cavity during toothbrushing, the system comprising: a toothbrush comprising an electronic circuit comprising a sensor that is configured to acquire signals related to the presence of hemoglobin in the oral cavity during a toothbrushing session; and a portable electronic device comprising a processor that is operably coupled to the sensor of the toothbrush, the processor configured to receive and process the signals to determine whether hemoglobin is present in the oral cavity during the toothbrushing session.
In a further aspect, the invention may be a system for detecting blood in a toothpaste slurry during a toothbrushing session, the system comprising: a sensor configured to generate signals related to the presence or absence of hemoglobin in the toothpaste slurry during the toothbrushing session; a processor operably coupled to the sensor and configured to receive and process the signals to determine whether hemoglobin is present in the toothpaste slurry during the toothbrushing session; and an output configured to inform a user whether blood is present in the toothpaste slurry during the toothbrushing session based on the processing performed by the processor.
In yet a further aspect, the invention may be a method of detecting blood in a toothpaste slurry during toothbrushing, the method comprising: brushing teeth and gums of an oral cavity with cleaning elements of a toothbrush during a toothbrushing session, wherein a toothpaste slurry is formed in the oral cavity during the toothbrushing session; generating signals related to the presence or absence of hemoglobin in the toothpaste slurry with a sensor that is coupled to the toothbrush; processing the signals with a processor to determine whether hemoglobin is present in the toothpaste slurry during the toothbrushing session; and when the processor determines that hemoglobin is present in the toothpaste slurry, providing an indication of the presence of blood in the toothpaste slurry to a user.
In still another embodiment, the invention may be a system for detecting blood in an oral cavity during toothbrushing, the system comprising: a toothbrush comprising: a first sensor configured to generate first signals related to the presence or absence of hemoglobin in the oral cavity during a toothbrushing session; and a second sensor configured to generate second signals related to a location of a head of the toothbrush within the oral cavity during the toothbrushing session; and a processor operably coupled to the first and second sensors, wherein the processor is configured to receive and process the first and second signals to determine a location of the head of the toothbrush within the oral cavity when blood is initially detected during the toothbrushing session.
In a still further embodiment, the invention may be a method of detecting blood in an oral cavity during toothbrushing, the method comprising: brushing teeth and gums of an oral cavity with cleaning elements of a toothbrush during a toothbrushing session; generating first signals related to the presence or absence of hemoglobin in the toothpaste slurry with a first sensor that is coupled to the toothbrush; generating second signals related to a location of the cleaning elements of the toothbrush within the oral cavity; and processing the first and second signals with a processor to determine whether hemoglobin is present in the oral cavity during the toothbrushing session and, if so, a location of the cleaning elements within the oral cavity when the hemoglobin was initially detected.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
Features of the present invention may be implemented in software, hardware, firmware, or combinations thereof. The computer or software programs described herein are not limited to any particular embodiment, and may be implemented in an operating system, application program, foreground or background processes, driver, or any combination thereof. The computer programs may be executed on a single computer or server processor or multiple computer or server processors.
Processors described herein may be any central processing unit (CPU), microprocessor, micro-controller, computational, or programmable device or circuit configured for executing computer program instructions (e.g. code). Various processors may be embodied in computer and/or server hardware of any suitable type (e.g. desktop, laptop, notebook, tablets, cellular phones, etc.) and may include all the usual ancillary components necessary to form a functional data processing device including without limitation a bus, software and data storage such as volatile and non-volatile memory, input/output devices, graphical user interfaces (GUIs), removable data storage, and wired and/or wireless communication interface devices including Wi-Fi, Bluetooth, LAN, etc.
Computer-executable instructions or programs (e.g. software or code) and data described herein may be programmed into and tangibly embodied in a non-transitory computer-readable medium that is accessible to and retrievable by a respective processor as described herein which configures and directs the processor to perform the desired functions and processes by executing the instructions encoded in the medium. It should be noted that non-transitory “computer-readable medium” as described herein may include, without limitation, any suitable volatile or non-volatile memory including random access memory (RAM) and various types thereof, read-only memory (ROM) and various types thereof, USB flash memory, and magnetic or optical data storage devices (e.g. internal/external hard disks, floppy discs, magnetic tape CD-ROM, DVD-ROM, optical disk, ZIP™ drive, Blu-ray disk, and others), which may be written to and/or read by a processor operably connected to the medium.
In certain embodiments, the present invention may be embodied in the form of computer-implemented processes and apparatuses such as processor-based data processing and communication systems or computer systems for practicing those processes. The present invention may also be embodied in the form of software or computer program code embodied in a non-transitory computer-readable storage medium, which when loaded into and executed by the data processing and communications systems or computer systems, the computer program code segments configure the processor to create specific logic circuits configured for implementing the processes.
The invention described herein relates to an apparatus (i.e., toothbrush), system, and method of detecting gum bleeding (or any bleeding in an oral cavity, which may include bleeding on the soft tissues of the inner cheeks or elsewhere) using sensors that measure the hemoglobin level in saliva/toothpaste slurry. In one aspect, the detection of gum or other soft tissue bleeding occurs during toothbrushing, so the sensors may be described herein as being located on a toothbrush. The sensor may include a light transmitter and a light receiver. The light transmitter may emit visible and infrared light during toothbrushing and the intensity of the reflected light (i.e., the light reflected back from the toothpaste slurry) is received by the light receiver. Because hemoglobin has a strong red color, it absorbs green light while reflecting the majority of the red and infrared light back. Therefore, using a ratio of reflected light intensity (red/green and/or infrared/green) and applying that data to a processing algorithm, the hemoglobin can be quantified. The information obtained can either be stored on a memory device in the toothbrush or automatically transferred to a mobile phone (or other portable electronic device) app (software application), or both. In either case, the information can be provided to a user (either as logs of all information or as an indicator that blood was present in the toothpaste slurry) so that a user can be informed about gum bleeding.
Referring to
The refill head 120 also comprises cleaning elements 123 that extend from the head portion 122. The cleaning elements 123 may be bristles, elastomeric fingers, lamella, rubber elements, or the like. Specifically, the cleaning elements 123 may be any feature or structure that is known to be used for cleaning of the teeth, gums, and other oral cavity surfaces. The pattern, material, shape, rigidity, or the like of the cleaning elements is not to be limiting of the invention.
In certain embodiments, the exact structure, pattern, orientation, and material of the tooth cleaning elements 123 are not to be limiting of the present invention. Thus, the term “tooth cleaning elements” may be used herein in a generic sense to refer to any structure that can be used to clean, polish or wipe the teeth and/or soft oral tissue (e.g. tongue, cheek, gums, etc.) through relative surface contact. Common examples of “tooth cleaning elements” include, without limitation, bristle tufts, filament bristles, fiber bristles, nylon bristles, spiral bristles, rubber bristles, elastomeric protrusions, flexible polymer protrusions, combinations thereof, and/or structures containing such materials or combinations. Suitable elastomeric materials include any biocompatible resilient material suitable for uses in an oral hygiene apparatus. To provide optimum comfort as well as cleaning benefits, the elastomeric material of the tooth or soft tissue engaging elements has a hardness property in the range of A8 to A25 Shore hardness. One suitable elastomeric material is styrene-ethylene/butylene-styrene block copolymer (SEBS) manufactured by GLS Corporation. Nevertheless, SEBS material from other manufacturers or other materials within and outside the noted hardness range could be used.
The tooth cleaning elements 123 of the present invention can be connected to the head portion 122 of the refill head 120 in any manner known in the art. For example, staples/anchors, in-mold tufting (IMT), anchor free tufting (AFT), PTt anchorless tufting, or the like could be used to mount the cleaning elements/tooth engaging elements to the head portion 122 of the refill head 120.
In the exemplified embodiment, the cleaning elements 123 define a cleaning element field 124. Furthermore, the cleaning element field 124 defines an opening or cavity 125, which is formed by a portion of the head portion 122 not having any cleaning elements 123 extending therefrom. Thus, there is a portion of the head portion 122 that is devoid of any cleaning elements 123, and this portion is surrounded by the cleaning elements 123 to form the cavity 125 within the cleaning element field 124. Of course, in other embodiments the spacing between the cleaning elements 123 of the cleaning element field 124 may be different than that which is shown such that there is no cavity per se, but still so that a gap in the cleaning element field 124 remains. The purpose of this opening or cavity 125 (or gap in the cleaning element field 124) will be better understood from the description below with particular reference to
Although in the exemplified embodiment the toothbrush 100 is one which includes a body 110 and a refill head 120 that are detachably coupled together, in other embodiments the toothbrush 100 may be a unitary component comprising a handle and a head that are fixedly coupled together, such as with most traditional manual toothbrushes in the market. Having a detachable refill head 120 may be desirable because it can prolong the use of the toothbrush 100 by enabling a user to replace the refill head 120 and hence also the bristles 123 as they become worn while reusing the body 120 which includes expensive circuitry and electronic components as described further herein below. However, it is possible to utilize the techniques and components described herein on a more conventional manual toothbrush that does not include a replaceable refill head. Thus, the invention is not limited to one which requires the toothbrush to include a refill head in all embodiments unless specifically claimed as such.
In the exemplified embodiment, the toothbrush 100 comprises an electronic circuit 130 for acquiring and/or generating signals related to detecting the presence of hemoglobin (and hence also blood) in the oral cavity (or a toothpaste slurry) during a toothbrushing session. The toothbrush 100 (and related system described below) is able to detect and measure hemoglobin/blood using a few wavelengths (two to three) in visible and/or infrared regions during toothbrushing. Thus, no reagents, assays, wet chemistry preparation, and/or specialized equipment is needed to detect the hemoglobin/blood using the techniques described herein.
As mentioned above, in the exemplified embodiment the components of the electronic circuit 130 are located within the body 110 of the toothbrush 100, which is a non-replaceable part of the toothbrush. In that regard, the body 110 of the toothbrush 100 comprises a cavity or otherwise hollow region within which the components of the electronic circuit 130 are located. Because the electronic circuit 130 is located within the body 110 and not the refill head 120, as the cleaning elements 123 on the refill head 120 become worn, a new refill head 120 can be attached to the body 110 to prolong the usable life of the toothbrush 100. This is one reason that forming the toothbrush 100 so that it includes a body 110 and a detachable refill head 120 may be desirable.
In the exemplified embodiment, the electronic circuit 130 comprises, in operable coupling, a processor 131, a power source 132, a sensor 133, a memory device 134 (which could alternatively be a part of the processor 131 in some embodiments), a Bluetooth module 135, and an indicator 136. The components of the electronic circuit 130 are all located within a cavity in the body 110. Furthermore, in the exemplified embodiment the electronic circuit 130 also comprises a motor 137 that is operably coupled to the processor 131 for imparting motion and/or vibrations to the refill head 120 in instances in which the toothbrush 100 is a powered toothbrush instead of a manual toothbrush. For example, the motor 137 could include an eccentric counterweight to provide vibration during tooth cleaning. The processor 131 may be considered a microcontroller in some embodiments because may include all peripherals in the chip itself and may not run on any operating system.
The illustration of
In the exemplified embodiment, the motor 137 and the sensor 133 are located in the stem 112 of the body 110 and the processor 131, the power source 132, the memory device 134, the Bluetooth module 135, and the indicator 136 are located in the handle portion 111 of the body 110. In some embodiments, the processor 131 may be located in the stem 112 alongside of the sensor 133 rather than in the handle portion 111. The sensor 133 may be connected to the processor 131 using any desired techniques, although a standard ADC, I2C or SPI interface may be used in some embodiments. In some embodiments, the Bluetooth module 135 may be coupled to the processor 131 through a standard serial interface. In other embodiments, the Bluetooth module 135 and the processor 131 can be combined as a single unit. Furthermore, as noted above the memory device 134 may be a part of the processor 131 in some embodiments, and in other embodiments the memory device 134 may be omitted entirely.
Referring to
In the exemplified embodiment, the sensor 133, and hence also the cavity 125, is located centrally along the bristle field. However, the invention is not to be so limited in all embodiments. In other embodiments, the sensor 133 may be located so as to be aligned with the proximal end of the head 120 with the bristle field 124 being located entirely between the sensor 133 and the distal end of the head 120. In such an embodiment, there may be no need for the bristle field 124 to include the cavity 124 because there will be no overlap between the bristle field 124 and the sensor 133.
Referring to
In the exemplified embodiment, the sensor 133 is a singular structure that includes all of the features/components noted herein. However, the invention is not to be so limited and in some other embodiments the sensor may comprise multiple sensors that are independent and distinct from one another. For example, the sensor may include discrete light sources that are separate and apart from a receiver. Thus, the term sensor, as used herein, includes the situation where a single sensor having all of the necessary components is used and the situation where multiple sensors that in combination have all of the necessary components are used.
The first light source 142 is configured to emit light at a first wavelength, the second light source 143 is configured to emit light at a second wavelength that is different than the first wavelength, and the third light source is configured to emit light at a third wavelength that is different than the first and second wavelengths. For example, in one embodiment the first light source 142 is configured to emit red light having a wavelength in a range of 625-740 nm, more specifically 640-680 nm. Furthermore, in one embodiment the second light source 143 is configured to emit green light having a wavelength in a range of 520-560 nm, more specifically 520-540 nm. Further still, in one embodiment the third light source 144 is configured to emit infrared light having a wavelength in a range of 700 nm-1 micron, and more specifically 830-930 nm, and still more specifically 860-900 nm. In the exemplified embodiment, each of the first, second, and third light sources 142, 143, 144 are light emitting diodes, although other types of light sources may be used in the alternative. Thus, the transmitter 140 of the sensor 131 comprises multiple light sources such that each of the light sources transmits light at a different wavelength. The receiver 141 may be a broad spectrum light detector such that it can detect reflected light in all of the wavelengths mentioned herein (i.e., it can detect at least red, green, and infrared light).
In the exemplified embodiment the sensor 133 is operably coupled to the processor 131 so that measurements or other information detected by the sensor 133 can be transmitted to the processor 131 as a signal for processing. Furthermore, the processor 131 is pre-programmed with algorithms or otherwise works in association with software applications containing algorithms so that the processor 131 can perform various calculations using the information acquired by the sensor 133 to determine whether hemoglobin, and hence also blood, is being detected by the sensor 133. Specifically, the processor 131 can perform calculations and then, utilizing the pre-programmed algorithms, determine whether the results of those calculations indicate that hemoglobin/blood is present or not, and if so at what quantity.
Specifically, referring to
Referring first to
Referring to
Thus, as shown in
Thus, during toothbrushing with the cleaning elements 123 of the toothbrush 100, the sensor 133 transmits the first, second, and third lights 145, 146, 147 into the oral cavity. The first, second, and third lights 145, 146, 147 contact the toothpaste slurry 150, 151 in the oral cavity and reflected portions of the first, second, and third lights 145, 146, 147 are received by the receiver 141 of the sensor 133. The intensity of the reflected portions of the first and third lights 145, 147 (red and infrared light) are relatively unchanged regardless of whether or not the toothpaste slurry comprises blood. However, the intensity of the reflected portion of the second light 146 (green light) is greater when the toothpaste slurry does not comprise blood than when it does. Thus, the sensor 133 generates a first signal indicative of a first intensity of the reflected portion of the first light 145, a second signal indicative of a second intensity of the reflected portion of the second light 146, and a third signal indicative of the third intensity of the reflected portion of the third light 147.
Because the intensity of the reflected portion of the second light 146 is reduced when there is blood in the toothpaste slurry while the intensity of the reflected portions of the first and third light 145, 147 remain substantially the same regardless of whether or not there is blood in the toothpaste slurry, the ratio of the reflected light intensities can be used to identify and quantify hemoglobin/blood. Thus the processor 131 may have an algorithm that can calculate the ratios and determine whether or not (and how much) hemoglobin and blood is present.
Due to their operable coupling, the first, second, and third signals (although the third signal could be omitted because the system could operate just as well with only red or infrared light and green light being transmitted by the sensor 133) is transmitted from the sensor 133 to the processor 131. The processor 131 is equipped with algorithms instructing it to perform calculations with the first, second, and third signals to assist in determining whether hemoglobin/blood is in the toothpaste slurry. Specifically, the processor 131 is configured to calculate a ratio of the first intensity of the first light 145 to the second intensity of the second light 146 and/or a ratio of the third intensity of the third light 147 to the second intensity of the second light 146. As should be appreciated, if there is hemoglobin/blood in the toothpaste slurry, the intensity of the reflected portion of the second light 146 is less than if there is no hemoglobin in the toothpaste slurry. Thus, if there is hemoglobin/blood in the toothpaste slurry, the ratio of the first intensity of the first light 145 to the second intensity of the second light 146 and the ratio of the third intensity of the third light 147 to the second intensity of the second light 146 is increased as compared to the situation where there is no hemoglobin/blood in the toothpaste slurry (due to the denominator in the ratio calculation being reduced). Using this understanding and the developed algorithms, the processor 131 can make a determination as to whether there is hemoglobin/blood in the toothpaste slurry, and if so, how much.
For example, the processor 131 or algorithm may be set with a predetermined threshold for the various ratios that are calculated so that upon the ratio exceeding the predetermined threshold, the processor 131 will be informed that hemoglobin/blood has been detected. Thus, the processor 131 can be programmed so that if the ratio of the first intensity of the first light 145 to the second intensity of the second light 146 exceeds a first predetermined threshold and/or the ratio of the third intensity of the third light 147 to the second intensity of the second light 146 exceeds a second predetermined threshold, hemoglobin/blood is present.
These predetermined thresholds may be determined based on testing with baseline samples of toothpaste slurry that do not include hemoglobin/blood and testing with test samples of toothpaste slurry that include varying amounts of toothpaste slurry, as discussed further below with reference to
Specifically,
As should be appreciated, the solutions with a higher concentration of hemoglobin will have a darker red color, and therefore will absorb more green light that is transmitted at it. A single 50 microliter droplet of each solution was measured using the prototype device.
Referring again to
In some embodiments, the indicator 136 may light up in different colors depending on the status of the toothbrush 100 or sensor 133. For example, the indicator 136 may illuminate as blue when the sensor 133 is operably coupled to a portable electronic device as described in more detail below, the indicator 136 may be red when the toothbrush 100 or power source thereof is charging, and it may be green when the toothbrush 100 is being used in a toothbrushing session. In other embodiments, the indicator 136 may light up as red (or orange or any other color) when blood is determined to be present in the toothpaste slurry/oral cavity as described herein.
In some embodiments, there may be a button or other type of actuator (slide switch, button, capacitive sensor, etc.) on the toothbrush 100 for activating the sensor 133. Thus, prior to a toothbrushing session, a user may press (or otherwise actuate) the button to activate the sensor 133. Pressing the button (or otherwise actuating the actuator) may also activate the motor 137 when the motor 137 is included such as when the toothbrush 100 is a powered toothbrush. Alternatively, there may be separate buttons/actuators for the motor 137 and for the sensor 133. In some embodiments, there is no motor and the toothbrush 100 is a manual toothbrush.
Referring to
Using this example, if the ratio of the intensity of the reflected portion of the first (i.e., red) light to the intensity of the reflected portion of the second (i.e., green) light is greater than 5.6, it can be determined that there is hemoglobin/blood in the oral cavity (or in the toothpaste slurry and hence also in the oral cavity). Similarly, if the ratio of the intensity of the reflected portion of the third (i.e., infrared) light to the intensity of the reflected portion of the second (i.e., green) light is greater than 4.8, it can be determined that there is hemoglobin/blood in the oral cavity (or in the toothpaste slurry and hence also in the oral cavity).
In some embodiments, the sensor 133 is configured to collect data continuously once activated. For example, once powered on, the sensor 133 may collect data for a predetermined period of time, for example for 120 seconds, or 130 seconds, or 140 seconds, or 150 seconds to ensure that it is collecting data for the duration of a toothbrushing session (which is ideally 120 seconds, although more frequently a shorter period of time). In some embodiments, the sensor 133 may collect two data points every second such that it may collect 240 data points during a two minute toothbrushing session. In other embodiments, the sensor 133 may collect data intermittently. For example, the sensor 133 may collect data at ten seconds, and then at thirty seconds, and then at one minute, and then at one minute and fifteen seconds, and then at one minute and thirty seconds, and then at one minute and forth-five seconds, and then at two minutes. The exact frequency at which the sensor 133 collects data regarding the presence or absence of hemoglobin is not to be limiting of the present invention in all embodiments.
Referring to
Similar to the toothbrush 100, the toothbrush 200 comprises an electronic circuit 230 that may include a processor 231, a power source 232, a sensor 233, a memory device 234 (which could alternatively be a part of the processor 231 in some embodiments), a Bluetooth module 235, and an indicator 236. However, it may be possible to omit the processor 231, the memory device 234, and the indicator 236 in some embodiments. Thus, in some embodiments the electronic circuit 230 of the toothbrush 200 may comprise only the sensor 233 (which includes a transmitter 240 and a receiver 241), the power source 232, and the Bluetooth module 235. The toothbrush 200 may also include a motor 237 in instances where the toothbrush 200 is a powered toothbrush.
The reason that the toothbrush 200 need not include the processor 231, the memory device 234, and the indicator 236 (although it may include any of one or more of these components in some embodiments) is because these components are included as a part of the portable electronic device 300 that is in communication with the toothbrush 200. Specifically, the portable electronic device 300 may be a smart phone, a tablet, a computer, or a similar device that includes a processor 301, a memory 302, a user interface 303, a blood detection software application 304, and a Bluetooth module 305. The portable electronic device 300 may also include a display 306 (which can be the same as the user interface 303 or distinct from the user interface 303). In the exemplified embodiment, the processor 301 of the portable electronic device 300 is in operable communication with the sensor 233 of the toothbrush 200 via Bluetooth due to the incorporation of the Bluetooth module 235 in the toothbrush 200 and the Bluetooth module 305 in the portable electronic device 300 (when the toothbrush 200 and the portable electronic device 300 are in sufficiently close proximity to one another so as to allow for such a Bluetooth connection). Of course, Bluetooth is merely one exemplary way that the toothbrush 200 and the portable electronic device 300 can be in communication. In other embodiments, there may be a wired connection between the toothbrush 200 and the portable electronic device 300 or they may communicate using other wireless protocols (infrared wireless communication, satellite communication, radio, microwave, Zigbee, Z-wave, or the like). Of course, the sensor 233 may have a built-in microcontroller in some embodiments.
In this embodiment, the sensor 233 will operate in the same way as the sensor 133 described above. Thus, the transmitter 240 of the sensor 233 comprises multiple light sources that emit light at different wavelengths and the receiver 241 of the sensor 233 receives reflected light. The sensor 233 then generates signals indicative of the intensities of the various reflected lights. However, in this embodiment the signals are then transmitted, via Bluetooth or otherwise, from the sensor 233 of the toothbrush 200 to the processor 301 of the portable electronic device 300. The transmission of these signals from the sensor 233 of the toothbrush 200 to the processor 301 of the portable electronic device 300 may occur so long as the toothbrush 200 and the portable electronic device 300 are in operable communication (either via Bluetooth or other wireless technologies or through a wired connection).
In some embodiments, the information associated with the signals and the information detected by the sensor 133 may be stored in the memory 234 and/or processor 231 of the toothbrush 200 initially and then transferred to the processor 301 of the portable electronic device 300 in batches. Thus, data or information corresponding to a plurality of different toothbrushing sessions may initially be stored in the memory 234 and/or processor of the toothbrush 231. This can be useful in instances in which the user brushes his/her teeth at a time that the toothbrush 200 is not in operable communication with the portable electronic device 300. In this way, the toothbrush 200 will initially store all of the data, and then once the toothbrush 200 becomes operably coupled to the portable electronic device 300, the data can be transmitted to the portable electronic device 300 for further processing as described herein (either automatically or in response to manual user input). In such embodiments, the processor 231 may be able to process the data just like the processor 131 of the toothbrush 100 so that the processor 231 can activate the indicator 236 when it determines that hemoglobin/blood is present in the oral cavity or toothpaste slurry.
As noted above, the portable electronic device 300 may have a blood detection software application 304 downloaded thereon. Thus, during or just prior to a toothbrushing session, a user may open the blood detection software application 304 and put the toothbrush 200 into operable (wireless or wired) communication with the portable electronic device 300. Alternatively, the operable coupling between the toothbrush 200 and the portable electronic device 300 may cause the blood detection software application 304 to automatically launch on the portable electronic device 300. In such a situation, as the sensor 233 of the toothbrush 200 is gathering information/data related to the intensity of the reflected light, it will transmit this data/information to the processor 301 of the portable electronic device 300. In some embodiments, this transmission of data/information from the sensor 233 to the processor 301 may occur automatically so long as the toothbrush 200 and the portable electronic device 300 are in operable communication with one another. Of course, as noted above, this data/information can alternatively (or additionally) be stored locally on the memory device 234 of the toothbrush 200 and then transmitted to the portable electronic device 300 in batches. The processor 301 of the portable electronic device 300 may make this data/information available to a user in various ways on the portable electronic device 300 using the blood detection software application 304.
Specifically, referring first to
In some embodiments, if blood is detected at any time during the toothbrushing session, the display 306 on the portable electronic device 300 will indicate this throughout the entirety of the toothbrushing session. In some embodiments, the display 306 on the portable electronic device 300 will update during the toothbrushing session depending on whether blood is being detected at a given time during the toothbrushing session. In some embodiments, the output on the display 306 may be an indication that blood was detected, and/or an indication of the quantity of blood detected, and/or an indication as to whether blood was detected and if so the time during the toothbrushing session that it was detected (for example, the display 306 may indicate that blood was first detected eighteen seconds into the toothbrushing session).
For example, referring to
Thus, with the data provided in
In some embodiments, sensor data can be uploaded to a remote cloud server(s) for achieving further analysis. The toothbrush 100, 200 could include a WiFi chip so that it can transmit data to the cloud or to a remote server, or the toothbrush 100, 200 can transmit the data to the portable electronic device 300, which in turn can send the data to the cloud/server. Users can use their computers (larger screen) to access their long term data log to see the trend (on a software app or program, on a website, or the like), and choose to share these data with their oral care service providers for better care. Oral care service providers can review these data to monitor their patients in between their regularly scheduled visits. Researchers can utilize these data for oral health study or efficacy evaluation of existing or experimental oral care products or regimens, as well as epidemiology studies in oral care. Insurance companies can reduce their cost by requesting high risk population to take early or preventive treatments.
In some embodiments, the system 1000 or toothbrush 100 may be able to detect how much blood (i.e., quantity) that a user bleeds in a single toothbrushing session. However, this information may not be as helpful as it seems because it may be dependent on when the user brushes a particularly blood prone region of the oral cavity during the toothbrushing session. Thus, if the user tends to bleed from the gums above the first molar in the upper left quadrant of the mouth, if the user brushes the upper left quadrant of the mouth first during the toothbrushing session than there would be more blood during the toothbrushing session than if the user brushes the upper left quadrant of the mouth last during the toothbrushing session. That said, obtaining a value for the quantity of blood bled during a toothbrushing session may still have some value to a user or medical professional.
Referring again to
One example of such a toothbrush that is configured to track the location in the oral cavity is described in U.S. Pat. No. 10,349,733, issued on Jul. 16, 2019, the entirety of which is incorporated herein by reference. Thus, the one or more location tracking sensors may be accelerometers, motion sensors, intertial sensors, gyroscopes, magnetometers, and other sensors capable of detecting positions, movement, and acceleration. The location tracking sensors may transmit signals to the processor 131, 231 so that the processor 131, 231 may be configured to determine where in the oral cavity the toothbrush head is located at a given time during the toothbrushing session. The tracking sensor 139 may be a single sensor or it may be multiple sensors, and it may comprise sensors of different types (accelerometers, gyroscopes, proximity sensors, etc.).
Thus, combining this location tracking with the blood tracking, the processor 131, 231 may keep a log of where in the mouth the toothbrush is located when blood is first detected. Because the sensors 133, 233 may take measurements/collect data every second in some embodiments, the sensors 133, 233 will detect blood almost instantaneously. Thus, if the head of the toothbrush 100, 200 is located in the upper right quadrant of the mouth and the gums in that region start to bleed, the system 1000 will be able to track this information and provide it to the user (such as via the blood detection software application 304 or the like). Specifically, the system 1000 will know where the toothbrush 100, 200 was located at the time that blood was first detected, which is a good indication that the blood is coming from the region of the oral cavity that the toothbrush 100, 200 is located at that time. The system 1000 may be able to track locations of bleeding based on which of four quadrants (upper left, upper right, lower left, lower right) of the oral cavity that the bleeding occurs or it may be able to provide more specific information such as that the gums above the first molar in the upper left quadrant of the mouth are bleeding. Furthermore, it need not be based on four quadrants and could instead simply track whether the blood is coming from the top or bottom of the oral cavity. In still other embodiments, the oral cavity may be divided into more than four quadrants to provide a more precise indication as to where the blood is coming from. In this way, the system 1000 (or toothbrush 100) will be able to track which part of the oral cavity is bleeding and provide that information to the user or to a medical professional. This can be beneficial information for a user to provide to a medical professional or simply for the user to have so that the user can treat that area of the oral cavity as needed.
Thus, the system 1000 (or the toothbrushes 100, 200) may determine that at forty-five seconds into the toothbrushing session, blood was first detected. The system 1000 can then determine where in the mouth/oral cavity the toothbrush 100, 200 (or the head or cleaning elements thereof) was located forty-five seconds into the toothbrushing session. In this way, the system 1000 can determine the location within the oral cavity of the toothbrush 100, 200 at the time that blood was first detected, which is very likely to be the location of the oral cavity that is bleeding. This information can be provided to the user on a graphical display. For example, the display 306 on the portable electronic device 300 may show a visual representation of a set of teeth or an oral cavity, and the display may indicate which region of the oral cavity (such as by highlighting that region or coloring it red or the like) the blood was first detected.
Along these same lines, the system 1000 (or the toothbrush 100, 200 itself) may also be able to determine when there is a second location within the oral cavity that is bleeding. For example, the system 1000 may keep track of the quantity/amount of blood that is in the oral cavity during the toothbrushing session. If at any time there is a significant increase in the amount of blood detected, the system 1000 may determine that there is a second location in the oral cavity that is bleeding. Thus, for example, if it is detected ten seconds into the toothbrushing session that there is 0.1 ml of blood and then at forty-five seconds into the toothbrushing session it is determined that there is 0.3 ml of blood, then the system 1000 may understand this to mean that there is a second location that is bleeding. Thus, the system 1000 may determine the location of the head of the toothbrush at the moment that the quantity of blood increased to determine the second bleeding location in the oral cavity.
Operation of the system 1000 will now be briefly described in accordance with a method of detecting blood in a toothpaste slurry during toothbrushing. The method includes having a user brush his or her teeth and gums with the cleaning elements 123 of the toothbrush 100 during a toothbrushing session. During such toothbrushing, if toothpaste has been pre-applied onto the cleaning elements 123, a toothpaste slurry will be formed in the oral cavity during the toothbrushing session. Next, signals containing information related to the presence or absence of hemoglobin in the toothpaste slurry is generated. In accordance with the exemplified embodiment, these signals are generated with a sensor 133 that is coupled to the toothbrush 100. More specifically, the sensor 133 will transmit first light at a first wavelength and second light at a second wavelength into the oral cavity where the toothpaste slurry is located. Portions of the first and second light will then be reflected off of the toothpaste slurry. A receiver 141 of the sensor 133 will receive the reflected portions of the first and second light.
Next, the processor 131, 301 will receive the signals corresponding to the intensities of the reflected portions of the first and second light. The processor 131, 301 will process these signals to determine whether hemoglobin (and therefore blood) is present in the toothpaste slurry. This may be achieved by the processor calculating a ratio of the first intensity of the reflected portion of the first light to the second intensity of the reflected portion of the second light. Using the results of this calculation, the processor 131, 301 can determine whether hemoglobin/blood is present in the toothpaste slurry. In some instances, when the processor 131, 301 determines that hemoglobin is present in the toothpaste slurry, the method may include providing an indication of the presence of blood in the toothpaste slurry to a user. This may involve displaying such an indication on the display 306 of the portable electronic device 300 or activating an indicator 136 located on the toothbrush 100.
The above described system and method is a “reagent” free system and method to measure hemoglobin using only a few wavelengths of light (2-3) in both visible and infrared regions during tooth brushing. The surfactant Sodium Lauryl Sulfate (“SLS”) in most toothpaste compositions serves as the stabilizing agent for hemoglobin, so the method does not require additional reagent specific for hemoglobin detection.
It should be noted that although the description provided herein relates to using the toothbrush 100, 200 and/or system 1000 to detect hemoglobin in order to determine whether there is blood in the oral cavity and/or toothpaste slurry, the invention is not to be so limited in all embodiments. For example, in some embodiments the toothbrush 100, 200 and/or system 1000 may be used to detect Serum albumin, which is also abundant in blood. However, Serum albumin does not have a strong spectral signature. Thus, when the toothbrush 100, 200 and/or system 1000 is used to detect Serum albumin, a dye such as bromocresol green or the like may first be added. The Serum albumin with a dye as noted herein would absorb red light, so the sensor 133, 233 noted herein could be used to detect this Serum albumin/dye in the same manner as noted above in order to determine whether blood is present, although the algorithm would have to be modified so that red light is the denominator in the equations.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/044783 | 8/2/2019 | WO |