Toothbrush

Information

  • Patent Grant
  • 7251849
  • Patent Number
    7,251,849
  • Date Filed
    Monday, August 22, 2005
    19 years ago
  • Date Issued
    Tuesday, August 7, 2007
    17 years ago
Abstract
A toothbrush comprises a handle and a head. The head includes a first section having cleaning elements extending outwardly from its outer surface. A ball joint is mounted to the head adjacent to the first section. The ball joint also includes cleaning elements extending outwardly from the outer surface. The head includes resilient material urging the ball joint so be in its initial position after the pivotal movement of the ball joint cleaning elements.
Description
BACKGROUND OF THE INVENTION

The present invention is directed primarily to a manually held toothbrush which would include a handle and a head. With conventional manual toothbrushes, cleaning elements, such as tufts of bristles, are mounted to the head. When toothpaste is applied to the cleaning elements the user inserts the head into the mouth and brushes the teeth in a known manner.


Conventionally, a toothbrush head is of one piece construction which is elongated and symmetrical in shape on each side of the longitudinal center line. Generally, the head includes fixed bristles extending outwardly from one surface of the head. Attempts have been made to provide additional flexibility to the bristles by permitting some movement of the bristles during use of the toothbrush. A number of patents, for example, disclose utilizing a pivotal or ball joint mounted on the toothbrush head to permit such movement. U.S. Pat. No. 5,491,866, for example, discloses an articulate toothbrush wherein a pivot joint connects the handle and head. All of the bristles are mounted to the pivotable head. U.S. Pat. No. 3,398,421 discloses a toothbrush wherein the head includes a pair of carriers each of which is retained by a ball member; alternatively, a single ball member is used for all of the carriers. No other bristles are included in the head. A similar approach is disclosed in patent abstracts of Japan publication No. 06327517.


Another approach is to have a plurality of individually mounted groups of bristles secured to a respective ball, such as disclosed in U.S. Pat. No. 2,263,802 and Russian patent SU 1752336. The head includes no fixed bristles. A similar approach is utilized in a hairbrush disclosed in U.S. Pat. No. 4,114,222.


U.S. Pat. No. 4,654,922 discloses a toothbrush with a universal joint for two segments located outwardly of the head with the joints being disposed in a longitudinal direction. Accordingly, the head actually includes the two separate sections which extend outwardly from the head. The head itself may also be attached to the handle by a ratchet ball.


U.S. Pat. No. 6,088,870 discloses a toothbrush having a flexibly mounted bristles wherein the bristles are mounted on a resilient lattice network.


SUMMARY OF THE INVENTION

An object of this invention is to provide a toothbrush wherein the toothbrush head includes cleaning elements, such as bristles, mounted on a ball joint to provide an extra degree of motion, in addition to fixed cleaning elements.


In accordance with this invention an elongated head is attached to the end of a handle. The head has an outer surface from which a plurality of cleaning elements extend. In addition, the head includes a further set of cleaning elements mounted to a ball joint located generally perpendicular to the outer surface so that these cleaning elements may move in various directions, including along the longitudinal axis of the head.


In a preferred practice of this invention the ball joint is located below the outer surface of the head. The ball joint includes an outwardly extending stem which in its initial position is perpendicular to the outer surface of the head. A carrier for the cleaning elements is mounted to the stem. The stem is surrounded by elastomer material to urge the stem back to its initial position.


The ball joint could be mounted to the head as a separate component which is snapped into place or could be joined into the cavity of the head by a flexible, resilient elastomer. The ball joint might be assembled via insert molding process.





THE DRAWINGS


FIG. 1 is a perspective view of a toothbrush in accordance with this invention;



FIG. 2 is a side elevational view of the toothbrush shown in FIG. 1;



FIG. 3 is a front elevational view of the toothbrush shown in FIGS. 1–2;



FIG. 4 is a cross-sectional view taken through FIG. 3 along the line 44;



FIG. 5 is a view similar to FIG. 4 in a different phase of operation;



FIG. 6 is a view similar to FIGS. 4–5 of an alternative form of this invention;



FIG. 7 is a plan view of the alternative shown in FIG. 6; and



FIG. 8 is a front elevational view of a further toothbrush in accordance with this invention.





DETAILED DESCRIPTION

The present invention is directed to toothbrushes which are inserted in the mouth during use. Although the drawings illustrate a toothbrush which is manually operated, it is to be understood that the teachings of this invention could be incorporated in power operated or electric toothbrushes wherein a portion of the toothbrush head is, for example, oscillated such as by means of the type of drive illustrated in U.S. Pat. No. 5,625,916, all of the details of which are incorporated herein by reference thereto. Such a toothbrush would include at least one oscillating or rotating section and would also include at least one section wherein the cleaning elements are mounted on a ball joint as later described.



FIGS. 1–3 show a toothbrush 10 in accordance with this invention. As shown therein toothbrush 10 includes a handle 12 and a head 14. Head 14 includes a fixed section 16 having an outer surface 18 from which various cleaning elements 19, 20 extend. Head 14 also includes a section located near handle 12 which includes a ball joint 22 having cleaning elements 24. The utilization of the ball joint 22 introduces an extra degree of motion other than flexing the bristle strands where bristles are used as the cleaning elements.


The ball joint 22 could be mounted to head 14 in any suitable manner. FIG. 4, for example, illustrates a socket 26 located in a recess 28 on the underside of head 14, that is the side opposite outer surface 18. The ball joint 22 includes a neck or stem 30 connected to a carrier 32 with the cleaning elements 24 mounted to carrier 32. Stem 30 could be surrounded by elastomeric material 34 to fill the opening in head 14 necessary to accommodate the ball joint while still permitting universal type movement of ball joint 22.


As shown in FIG. 4 the bottom of carrier 32 is concave to complement the convex outer surface of elastomer 34 and head 14 to facilitate the pivoting of carrier 32. As also shown, ball joint 22, stem 30 and carrier 32 are integral.



FIG. 5 illustrates ball joint 22 in its condition during use where the ball joint 22 has pivoted in a direction toward handle 12.


An advantage of incorporating elastomeric material such as elastomeric material 34 or the resilient pad 38 (FIG. 6) around the stem 30 of the ball joint 22 is that the elastomer 34 or 38 provides extra motion in returning the ball joint 22 to its initial rest position where the stem 30 is generally perpendicular to the longitudinal axis or outer surface of head 14.



FIGS. 6–7 illustrate an alternative manner of mounting the ball joint 22. As shown therein a socket 36 which is generally spherical in shape is formed in head 14. A resilient pad formed of elastomeric 38 is mounted over socket 36. Carrier 32 has depending ribs 40 which press against pad 38. During assembly, ball joint 22 is snapped into place through a central hole in the pad 38. When ball joint 22 is in socket 36, ribs 40 contact pad 38. Instead of forming the ball joint structure as a separate component, the ball joint could be incorporated in the head 14 via insert molding process.


In both of the embodiments of FIGS. 1–5 and FIGS. 6–7, the ball joint 22 is located recessed below the outer surface of head 14. The cleaning element carrier 32 is disposed above the outer surface and mounted for pivotal movement by its connection to stem 30. Stem 30 is surrounded by elastomeric material 34 or elastomeric pad 38 to bias stem 30 to its initial position perpendicular to the outer surface of head 14.


Although FIGS. 1–3 illustrate the ball joint 22 and its cleaning elements 24 to be located between the fixed section 16 and the handle 12, other arrangements are possible such as by having a further fixed section on the opposite side of ball joint 22 or by having the ball joint located at the remote or distal end and the fixed section located between the ball joint and the handle. Similarly, while FIGS. 1–3 illustrate only a single ball joint the invention could be practiced with multiple ball joints.


As best illustrated in FIG. 3 the cleaning elements 20 are located along the periphery of fixed section 16 in a generally U-shaped pattern. Cleaning elements 19 are located within the U-shape. Cleaning elements 19 may be shorter than cleaning elements 20 to create a cup-like outer surface of the ends of the cleaning elements 19, 20 to help retain toothpaste on the cleaning elements. Cleaning elements 19 might be bristle bundles, while cleaning elements 20 might be in-molded technology bristles.


If desired, as shown in FIG. 2, the outer surface 18 of head 14 could include a concave depression 46 to accommodate a complementary shaped surface 44 of the ball joint structure. Alternatively, the outer surface 18 may have a convex protrusion which would accommodate a complementary shape concave portion of the ball joint structure, as shown in FIG. 4. These complementary surfaces facilitate the smooth movement of the ball joint carrier 32.


As shown in FIGS. 4–5 the outer surface of head 14 includes a recess 29 through which the stem 30 extends. The shape and dimension of recess 29 controls or limits the degree of pivoting that the cleaning elements 24 can make. In that regard, where the head 14 is generally formed from conventional hard plastic material the edges of the recess would function as a stop to limit the degree of pivoting action of the ball joint structure. FIG. 5, for example, shows the ball joint structure pivoted almost to the limit that would result where upon continued movement stem 30 contacts the edge of recess 29.


As shown in FIG. 6 head 14 includes a recess 43 into which the pad 38 would be mounted. The degree of pivoting permitted for the ball joint structure would be controlled by the size and dimension of the various components. Thus, the outer surface of head 14 would prevent further pivoting action of ball joint 22 when the carrier 32 contacts the outer surface 18.


As illustrated in FIGS. 4–5 the elastomer material 34 completely fills the open area in recess 29, thus, effectively functioning as biasing structure to urge the ball joint 22 back to its initial position where it is generally perpendicular to the longitudinal axis of head 14.


Although FIG. 3 illustrates the cleaning elements 20 to be a single row of tufts of bristles it is to be understood that the cleaning elements could be arranged in a plurality of rows. What is desired in the illustrated embodiment is that there should be an open area to accommodate cleaning elements 19.


Any suitable form of cleaning elements may be used as the cleaning elements 19, 20 and 24. The term “cleaning elements” is intended to be used in a generic sense which could include conventional fiber bristles or massage elements or other forms of cleaning elements such as elastomeric fingers or walls arranged in a circular cross-sectional shape or any type of desired shape including straight portions or sinusoidal portions. Where bristles are used, the bristles could be mounted to tuft blocks or sections by extending through suitable openings in the tuft blocks so that the base of the bristles is mounted within or below the tuft block.


It is to be understood that the specific illustration of the cleaning elements is merely for exemplary purposes. The invention can be practiced with various combinations of the same or different cleaning element configurations (such as stapled or in-molded technology bristles, etc.) and/or with the same bristle or cleaning element materials (such as nylon bristles, spiral bristles, rubber bristles, etc.) Similarly, while FIG. 2 illustrates the cleaning elements to be generally perpendicular to the outer surface 18 of head 14 some or all of the cleaning elements may be angled at various angles with respect to the outer surface of head 14. It is thereby possible to select the combination of cleaning element configurations, materials and orientations to achieve specific intended results to deliver additional oral health benefits, like enhanced cleaning tooth polishing, tooth whitening and/or massaging of the gums.


Although FIGS. 1–7 illustrate a manually operated toothbrush, the invention may also be practiced where the head includes one or more power or electrically operated movable sections carrying cleaning elements. Such movable section may oscillate in a rotational manner or may oscillate linearly in a longitudinal direction with respect to the longitudinal axis of the head or may oscillate linearly in a lateral or transverse direction with respect to the longitudinal axis of the head. The movable section may oscillate in and out in a direction toward and away from the outer surface of the head. The movable section may rock back and forth with respect to the outer surface of the head. The movable section may rotate continuously in the same direction, rather than oscillate. Any suitable drive mechanism may be used for imparting the desired motion to the movable section. Where plural movable sections are used, all of the movable sections may have the same type and direction of movement, or combinations of different movements may be used.



FIG. 8 illustrates a toothbrush l0A which includes a power driven movable disc or section 50 having cleaning elements. The movable section 50 could be oscillated rotationally such as by using the type of drive mechanism shown in U.S. Pat. No. 5,625,916, or could move in and out using the type of drive mechanism shown in U.S. Pat. No. Re35,941, all of the details of both patents are incorporated herein by reference thereto. Alternatively, the other types of drives referred to above could move section 50 in other manners and directions. Although FIG. 8 shows movable section 50 to be at the distal end of the head, the movable section(s) could be located at any desired location on the head.


As should be apparent the toothbrush 10 or 10A provides a head wherein there is an extra degree of motion to the cleaning elements. This extra degree of motion is accomplished by providing cleaning elements on a ball joint structure in such a manner that the cleaning elements may freely move in virtually any direction from its initial non-use position.

Claims
  • 1. A toothbrush head comprising: a first surface, a second outer surface opposite the first surface and an opening defined therebetween;a plurality of first cleaning elements extending from the first surface; anda carrier including a restricted end and a second cleaning element opposite the restricted end, the carrier movably mounted within the opening, the second cleaning element movable relative to the first surface;wherein the opening comprises a constriction that represents the smallest cross-section of the opening and that retains the carrier in the opening or prevents the carrier from passing through the second surface;wherein the restricted end of the carrier is positioned between said constriction and a plane defined along said second outer surface; andwherein the carrier enables movement of the second cleaning element from a first position perpendicular to the first surface, to a second position angled relative to the first surface.
  • 2. The toothbrush head of claim 1, wherein the carrier includes a rounded profile along at least one side thereof.
  • 3. The toothbrush head of claim 1, wherein the carrier is a ball joint.
  • 4. The toothbrush head of claim 1, wherein the second cleaning element is elastomeric.
  • 5. The toothbrush head of claim 1, wherein the second cleaning element includes a massaging element.
  • 6. The toothbrush head of claim 1, wherein the carrier extends beyond a plane defined by the first surface such that the second cleaning element extends from a position that is spaced from the first surface.
  • 7. The toothbrush head of claim 1, the carrier further comprising a platform which extends the second cleaning element.
  • 8. The toothbrush head of claim 7, wherein the platform is wider than the second cleaning element at a junction of the second cleaning element and the platform.
  • 9. A power toothbrush comprising: a power source; anda first surface, a second outer surface opposite the first surface and an opening defined therebetween;a plurality of first cleaning elements extending from the first surface; anda carrier including a restricted end and a second cleaning element opposite the restricted end, the carrier movably mounted within the opening, the second cleaning element movable relative to the first surface;wherein the opening comprises a constriction that represents the smallest cross-section of the opening and that retains the carrier in the opening or prevents the carrier from passing through the second surface;wherein the restricted end of the carrier is positioned between said constriction and a plane defined along said second outer surface; andwherein the carrier enables movement of the second cleaning element from a first position perpendicular to the first surface, to a second position angled relative to the first surface.
  • 10. The power toothbrush of claim 9, wherein the carrier includes a rounded profile along at least one side thereof.
  • 11. The power toothbrush of claim 9, wherein the carrier is a ball joint.
  • 12. The power toothbrush of claim 9, wherein the second cleaning element is elastomeric.
  • 13. The power toothbrush of claim 9, wherein the second cleaning element includes a massaging element.
  • 14. The power toothbrush of claim 9, wherein the carrier extends beyond a plane defined by the first surface such that the second cleaning element extends from a position that is spaced from the first surface.
  • 15. The power toothbrush of claim 9, the carrier further comprising a platform from which extends the second cleaning element.
  • 16. The power toothbrush of claim 9, further comprising a power driven cleaning element driven by the power source.
  • 17. The power toothbrush of claim 16, wherein the power driven cleaning element rotates.
  • 18. The power toothbrush of claim 17, wherein the power driven cleaning element oscillates.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority from application 60/402,164, Aug. 9, 2002, and is a continuation of U.S. application Ser. No. 10/442,307, May 20, 2003, now U.S Pat. No. 6,931,688, both of which are incorporated by reference herein in their entirety.

US Referenced Citations (100)
Number Name Date Kind
1191556 Blake Jul 1916 A
1268544 Cates Jun 1918 A
1796893 McVeigh Mar 1931 A
1908510 Dodson May 1933 A
2042239 Planding May 1936 A
2129082 Byrer Sep 1938 A
2139245 Ogden Dec 1938 A
2164219 McGerry Jun 1939 A
2263802 Grusin Nov 1941 A
2266195 Lay Dec 1941 A
2486847 Hokett Nov 1949 A
2604649 Stephenson et al. Jul 1952 A
2614556 Staunt Oct 1952 A
2637870 Cohen May 1953 A
2706825 Blakeman Apr 1955 A
2882544 Hadidian Apr 1959 A
2935755 Leira et al. May 1960 A
3103027 Birch Sep 1963 A
3110918 Tate, Jr. Nov 1963 A
3129449 Cyzer Apr 1964 A
3230562 Birch Jan 1966 A
3398421 Rashbaum Aug 1968 A
3691587 Makowsky Sep 1972 A
4114222 Serediuk Sep 1978 A
4240452 Jean Dec 1980 A
4291431 Lewis, Jr. Sep 1981 A
D282318 Herzfeld Jan 1986 S
4633542 Taravel Jan 1987 A
4654922 Chen Apr 1987 A
4694844 Berl et al. Sep 1987 A
4776054 Rauch Oct 1988 A
5186627 Amit et al. Feb 1993 A
5224234 Aesenault et al. Jul 1993 A
5269038 Bradley Dec 1993 A
5350248 Chen Sep 1994 A
5357644 Theriault Oct 1994 A
5398366 Bradley Mar 1995 A
5416942 Balducci et al. May 1995 A
5435032 McDougall Jul 1995 A
5483722 Scheier et al. Jan 1996 A
5491866 Simonds Feb 1996 A
5511276 Lee Apr 1996 A
5524319 Avidor Jun 1996 A
5528786 Porat et al. Jun 1996 A
5555590 Blum et al. Sep 1996 A
5625916 McDougall May 1997 A
5628082 Moskovich May 1997 A
5689850 Shekalim Nov 1997 A
5799354 Amir Sep 1998 A
5802656 Dawson et al. Sep 1998 A
5813079 Halm Sep 1998 A
RE35941 Stansbury, Jr. Nov 1998 E
5839148 Volpenhein Nov 1998 A
5862558 Hilfinger et al. Jan 1999 A
5864915 Ra Feb 1999 A
5875510 Lamond et al. Mar 1999 A
5896614 Flewitt Apr 1999 A
5901397 Hafile et al. May 1999 A
5930860 Shipp Aug 1999 A
5964508 Maurer Oct 1999 A
5974613 Herzog Nov 1999 A
5987688 Roberts et al. Nov 1999 A
5991959 Raven et al. Nov 1999 A
6000083 Blaustein et al. Dec 1999 A
6088870 Hohlbein Jul 2000 A
6115870 Solanki et al. Sep 2000 A
6138316 Weihrauch Oct 2000 A
6145153 Weihrauch Nov 2000 A
6148462 Zseng Nov 2000 A
6151745 Roberts et al. Nov 2000 A
6161245 Weihrauch Dec 2000 A
6209164 Sato Apr 2001 B1
6219874 Van Gelder et al. Apr 2001 B1
6237178 Krammer et al. May 2001 B1
6290303 Boucherie Sep 2001 B1
6334232 Sato Jan 2002 B1
6347425 Fattori et al. Feb 2002 B1
6349442 Cohen et al. Feb 2002 B1
6389634 Devlin et al. May 2002 B1
6408473 Kessler Jun 2002 B1
6553604 Braun et al. Apr 2003 B1
6564416 Claire et al. May 2003 B1
6574820 DePuydt et al. Jun 2003 B1
D477465 Reilly et al. Jul 2003 S
6829801 Schutz Feb 2004 B2
6702394 Boucherie Mar 2004 B2
6725490 Blaustein et al. Apr 2004 B2
6826797 Chenvainu et al. Dec 2004 B1
6938293 Eliav et al. Sep 2005 B2
20010050507 Boucherie Dec 2001 A1
20020066147 Schutz Jun 2002 A1
20020157198 Biro et al. Oct 2002 A1
20030084528 Chan et al. May 2003 A1
20030132661 Sato et al. Jul 2003 A1
20030140435 Eliav et al. Jul 2003 A1
20030159224 Fischer et al. Aug 2003 A1
20030196283 Eliav et al. Oct 2003 A1
20040045105 Eliav et al. Mar 2004 A1
20040117934 Pfenniger et al. Jun 2004 A1
20040168269 Kunita et al. Sep 2004 A1
Foreign Referenced Citations (30)
Number Date Country
1 210 409 Sep 1961 DE
39 28 919 Jul 1991 DE
4104314 Aug 1992 DE
19817704 Oct 1999 DE
200 06 311 Sep 2001 DE
0 405 204 Jul 1994 EP
0 567 672 Jun 1995 EP
0 471 312 Oct 1996 EP
0 704 179 Sep 1998 EP
1023855 Aug 2000 EP
0 972 464 Mar 2004 EP
1-214306 Aug 1989 JP
5-76416 Mar 1993 JP
6-327517 Nov 1994 JP
8-322641 Dec 1996 JP
10-66704 Mar 1998 JP
2001-190333 Jul 2001 JP
2002-10832 Jan 2002 JP
1752336 Aug 1992 SU
WO 9422346 Oct 1994 WO
WO 9714330 Apr 1997 WO
WO 9843514 Oct 1998 WO
WO 9937181 Jul 1999 WO
WO 0060980 Oct 2000 WO
WO 0064307 Nov 2000 WO
WO 0076369 Dec 2000 WO
WO 0121036 Mar 2001 WO
WO 0211583 Feb 2002 WO
WO 03043459 May 2003 WO
WO 2004082428 Sep 2004 WO
Related Publications (1)
Number Date Country
20050273961 A1 Dec 2005 US
Provisional Applications (1)
Number Date Country
60402164 Aug 2002 US
Continuations (1)
Number Date Country
Parent 10442307 May 2003 US
Child 11208683 US