2. Field of the Invention
The present invention is directed to wellbore operations, top drives, top drive casing systems and operations, torque heads, top drives with torque heads, and methods using them.
2. Description of the Related Art
The prior art discloses many systems and methods for running casing. The prior art also discloses a variety of systems using a top drive for running casing. Certain prior art top drive systems include the attachment of a spider (e.g. but not limited to, a flush mounted spider) suspended beneath a top drive from the bails.
The bails are then rigidly fastened to a top drive quill so as to cause the flush mounted spider to rotate in unison with any rotation of the quill. Engagement of the flush mounted spider's slips with a casing joint or string causes the casing to rotate in coordinated unison with the spider.
With many known prior art devices, apparatuses and systems 10 with which casing is gripped, e.g. by jaws, inserts, or dies, the casing is damaged. Such damage can result in casing which cannot be used. When premium tubulars are required, such damage is very expensive.
There has long been a need for an efficient and effective 15 system and method for running casing (making-up and breaking-out connections) with a top drive. There has long been a need for such a system and method which provides for continuous fluid circulation during running operations. There has long been a need for such a system and method that efficiently and effectively rotates casing and applies downward force on a casing string while the string is being installed in a wellbore. There has long been a need for such systems and methods which reduce damage to casing. There has long been a need for such a system and method wherein an apparatus that grips casing does not become locked on the casing.
The present invention, in certain aspects, provides a system with a top drive and its related apparatus, and a torque head connected to and below the top drive in a rig for selectively gripping casing. The present invention, in certain embodiments, discloses a torque head useful in such systems and methods, the torque head with jaws with grip members, including but not limited to, slips, dies, and inserts; and in one particular aspect slips with movable dies or inserts that have some degree of axial freedom with respect to the jaws so that, in one aspect, when the slips first contact the exterior of a casing section the dies or inserts move axially with respect to the casing rather than radially, i.e. initially they do not bite, or bite only minimally, into the casing. Then, as the casing is moved by the top drive slips allow limited vertical movement both upward and downward. This allows the slips, dies or inserts to move upward relative to the slips as they engage the casing and to move downward relative to the slips as they are disengaged from the casing.
In certain embodiments a fluid circulation tool or apparatus is mounted in a torque head according to the present invention. Part of this tool is introduced into the top of a casing joint when the joint is being hoisted and readied for makeup to a casing string. With appropriate sealing packers, the joint is filled with circulation fluid and then moved into position above the casing string. Once makeup commences, circulating fluid is circulated through the joint and to the casing string.
In certain particular embodiments of the present invention relative axial movement of the torque head with respect to a casing joint being gripped by the slips is also made possible by providing a mounting plate assembly that includes bolts holding it together and springs that allow some controlled axial movement of the torque head. With the slips gripping the casing, a torque head barrel is rigidly fixed relative to the casing and if the casing is made up to the string or is gripped at the spider, downward force on the torque head assembly causes the springs located in the top plate to compress and allows for limited axial movement relative to the casing and elevator, provided the elevator slips are engaged on the casing. Such a torque head can be used with the previously mentioned movable dies, etc., (which engage the casing when they are moved axially downwardly relative to the inner diameter of the torque head) and which are disengaged by axial movement upwardly relative to an inner diameter of the torque head. In the event the torque head assembly is subjected to a dangerous axial load of predetermined amount (e.g., but not limited to, about 100 tons or more), the bolts fail before significant damage is done to the torque head. When the bolts fail, the top plate assembly separates from the torque head barrel while the slips of the torque head assembly remain engaged against the casing, thus causing the barrel and slip mechanism within the barrel to remain firmly attached to the casing and prevent it from free falling the rig floor. This also reduces the possibility of items falling down (e.g. the torque head) and injuring personnel.
In certain aspects, selectively controlled piston/cylinder devices are used to move the slips into and out of engagement with a casing joint. In certain embodiments the piston/cylinder assemblies have internal flow control valves and accumulators so that once the slips engage the casing, hydraulic pressure is maintained in the cylinders and the slips remain in engagement with the casing.
Methods according to the present invention with systems 20 according to the present invention are more automated than previous systems because in various prior art systems the torque head can become locked onto the casing when the slips of an elevator (or other suspension/clamping device) are engaged against the casing after the slips of the torque head have been engaged. This condition is a result of the actuation of hydraulic cylinders and then not being able to provide sufficient force to disengage the slips and overcome the mechanical advantage created by the wedging action of slip assemblies without some relative vertical movement of the casing. With the slips of the elevator set, this relative vertical movement of the casing is prevented. The same condition exists for the slips of the elevator in various prior art systems so that the torque head and elevator are locked onto the casing. Various methods are employed to prevent or preclude the torque head from becoming locked onto the casing. In one aspect the dies are capable of some vertical movement relative to the slips. In another aspect in the torque head barrel some limited vertical movement relative to the casing is allowed due to the two-piece construction of the torque head barrel top assembly with incorporated spring washers. When the need to use a power tong to makeup a casing string is eliminated, as with systems according to the present invention, the need for a tong running crew is also eliminated.
It is, therefore, an object of at least certain preferred 10 embodiments of the present invention to provide: New, useful, unique, efficient, and novel and nonobvious system and methods for running casing with a top drive;
Such systems and methods which provide automated operations;
Such systems and methods which provide continuous fluid circulation during operations;
Such systems and methods which reduce or eliminate damage to casing by using grippers with movable dies or inserts (marking or non-marking); that prevent a torquing apparatus from becoming locked onto casing and/or which reduce or eliminate axial loading on a torquing apparatus and/or by providing for shear release of the torque head from an item, e.g. a top drive connected to it.
Certain embodiments of this invention are not limited to any particular individual feature disclosed here, but include combinations of them distinguished from the prior art in their structures and functions. Features of the invention have been broadly described so that the detailed descriptions that follow may be better understood, and in order that the contributions of this invention to the arts may be better appreciated. There are, of course, additional aspects of the invention described below and which may be included in the subject matter of the claims to this invention. Those skilled in the art who have the benefit of this invention, its teachings, and suggestions will appreciate that the conceptions of this disclosure may be used as a creative basis for designing other structures, methods and systems for carrying out and practicing the present invention. The claims of this invention are to be read to include any legally equivalent devices or methods which do not depart from the spirit and scope of the present invention.
The present invention recognizes and addresses the previously-mentioned problems and long-felt needs and provides a solution to those problems and a satisfactory meeting of those needs in its various possible embodiments and equivalents thereof. To one skilled in this art who has the benefits of this invention's realizations, teachings, disclosures, and suggestions, other purposes and advantages will be appreciated from the following description of preferred embodiments, given for the purpose of disclosure, when taken in conjunction with the accompanying drawings. The detail in these descriptions is not intended to thwart this patent's object to claim this invention no matter how others may later disguise it by variations in form or additions of further improvements.
A more particular description of embodiments of the invention briefly summarized above may be had by references to the embodiments which are shown in the drawings which form a part of this specification. These drawings illustrate certain preferred embodiments and are not to be used to improperly limit the scope of the invention which may have other equally effective or legally equivalent embodiments.
Referring now to
A torque sub 60 interconnects a spindle 24 (also called a “a quill”) of the top drive 20 and the top of a joint of casing 12 that extends into the torque head 100. Rotation of the spindle 24 by the top drive 20 rotates the torque sub 60 and the casing joint 12. A top portion of the casing 12 (or of a casing coupling if one is used) extends into the torque head 100.
A selectively operable bail movement apparatus 70 (also called a “pipe handler”) moves the bails 42 and elevator 40 as desired. The top drive 20 is movably mounted to part 14 of a rig (not shown). The top drive, top drive controls, torque wrench assembly, torque sub, elevator, bail movement apparatus and pipe handler may be any suitable known apparatuses as have been used, are used, and/or are commercially available.
Preferably the torque head is positioned above the elevator and the torque head is connected to the top drive spindle. In one particular embodiment the spindle or “quill” projects down into a top barrel of the torque head about 5.625 inches. The spindle is threadedly connected to the top of the torque head.
By controlling and selectively rotating the spindle 24 with the top drive 20, hoisting, lowering and torquing of casing is controlled via controls 16 (shown schematically) of the top drive 20. The torque sub 60 is interconnected with and in communication with controls 16 and it monitors torque applied to casing, e.g. during a makeup operation.
With the spindle or quill 24 engaged by the back-up assembly 30, the bails 42, elevator 40, and torque head 100 rotate together, thereby rotating a casing string (not shown) whose top joint is engaged by the torque head 100 while the string is lowered or raised. This is advantageous in the event the casing becomes stuck during setting operations; it is desirable to be able to rotate the casing string while it is being lowered.
As shown in
As shown in
Shields 107 are bolted with bolts 105 to the housing 102. Each piston/cylinder apparatus 151, 152, 153 has flow lines 155, 156 in fluid communication with it for the selective provision of power fluid to the piston/cylinder apparatus. With a pin 157, each piston/cylinder apparatus 151-153 is connected to the housing 102, e.g. by clips.
The hollow top barrel 127 with a flange 128 is bolted to the top plate 106 by bolts 129. Optionally, the top barrel 127 may be mounted to the housing 102 as shown in
As shown in
Lines 155, 156 in fluid communication with a system (not shown) for selectively providing fluid under pressure, e.g. a typical rig fluid pressure system. The lines connect the hydraulic actuating cylinders to an hydraulic rotating swivel union 206 (see
As shown in
As shown in
As shown in
As shown in
The clutch apparatuses 310 has a plurality of spaced-apart clutch plates 311 connected to the housing 302 (e.g. with a splined connection) and a plurality of spaced-apart clutch plates 313 connected to the input shaft 312. In certain aspects one set or the other of the clutch plates is covered with friction material, e.g. but not limited to typical brake and clutch lining materials. A piston 315 with edge O-ring seals 323, 325 is sealingly disposed above the top most clutch plate 313 in the interior space defined by an outer surface of the shaft 312 and an inner surface of the body 302. A spring apparatus 333 urges the piston 315 down, energizing the clutch. A snap ring 335 with a portion in a recess 337 of the body 302 holds the spring apparatus 333 in place. In one aspect the apparatus 333 is one or more belleville springs.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a torque head for gripping a tubular member (e.g. but not limited to casing that is part of a casing string), the torque head with a housing, and grip mechanism within the housing for selectively gripping a tubular member within the housing; such a torque head wherein the grip mechanism is able to grip the tubular member and exert both axial and torsional forces on the tubular member while it is gripped; and/or such a torque head with a top drive connected to the torque head.
Provided, therefore, in certain aspects, a torque head with a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including at least one jaw selectively movable toward and away from a portion of a tubular member within the housing, the at least one jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, the slip apparatus including die apparatus movably mounted to the at least one jaw, the die apparatus movable with respect to the at least one jaw so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable. Such a torque head may have one, some, any combination of, or all the following: wherein the die apparatus is movably upwardly as the portion of the tubular is engaged and downwardly as the portion of the tubular is disengaged; a bearing insert disposed between the die apparatus and the at least one jaw for facilitating movement of the die apparatus with respect to the at least one jaw; wherein the bearing insert is made from thermoplastic material or carbon-fiber reinforced resin compound; the die apparatus positioned in a recess in the at least one jaw, and a stop member secured to the at least one jaw with a portion thereof projecting into the recess of the at least one jaw for limiting movement of the die apparatus and for preventing escape of the die apparatus from the recess; releasable connection apparatus for releasably connecting the torque head to another item; the releasable connection apparatus including a top plate mounted to a top of the housing, a top barrel mounted to the top plate, and the top barrel mounted to the top plate with shear bolts shearable in response to a predetermined load for selective separation of the top barrel from the top plate; wherein there is spring apparatus between the top barrel and the top plate providing for limited axial movement of the top barrel with respect to the top plate; a piston-cylinder apparatus interconnected between the at least one jaw and the housing for selectively moving the at least one jaw into and out of engagement with the portion of the tubular member; guide apparatus connected to the at least one jaw for guiding movement of the at least one jaw fluid circulation apparatus for selectively continuously providing fluid to a tubular member gripped by the torque head; wherein the tubular member is connected to a tubular string extending downwardly from the torque head and the fluid circulation apparatus circulates fluid to the tubular string during operation of the torque head; at least one lower member secured at the bottom of the housing with an inclined portion for facilitating entry of a tubular member into the housing; wherein the at least one lower member is a plurality of spaced-apart lower members; and/or wherein the at least one jaw is a plurality of spaced-apart jaws.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a torque head for gripping tubular members, the torque head with a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including a plurality of spaced-apart jaws selectively movable toward and away from a portion of a tubular member within the housing, each jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, each slip apparatus including die apparatus movably mounted to a corresponding jaw, the die apparatus movable with respect to the jaws so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, wherein the die apparatus is movably upwardly as the portion of the tubular is engaged and downwardly as the portion of the tubular is disengaged, a bearing insert disposed between each die apparatus and each jaw for facilitating movement of the die apparatus with respect to the jaw, and releasable connection apparatus for releasably connecting the torque head to another item. Such a torque head may have one, some, any combination of, or all the following: torque head may have a top drive releasably secured to and above it.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a torque head for gripping tubular members, the torque head with a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including at least one jaw selectively movable toward and away from a portion of a tubular member within the housing, the at least one jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, the slip apparatus including die apparatus movably mounted to the at least one jaw, the die apparatus movable with respect to the at least one jaw so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, and releasable connection apparatus for releasably connecting the torque head to another item; a top plate mounted to a top of the housing, a top barrel mounted to the top plate, and the top barrel mounted to the top plate with shear bolts shearable in response to a predetermined load for selective separation of the top barrel from the top plate; wherein there is spring apparatus between the top barrel and the top plate providing for limited axial movement of the top barrel with respect to the top plate; fluid circulation apparatus for selectively continuously providing fluid to a tubular member gripped by the torque head; and/or a top drive releasably secured to and above the torque head.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a top drive system with a top drive, bails connected to and extending beneath the top drive, elevator apparatus connected to a lower end of the bails, wrenching apparatus interconnected with the top drive and positioned therebeneath, and a torque head connected to the top drive for selective rotation thereby and therewith, the torque head positioned beneath the wrenching apparatus, the torque head comprising a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including a plurality of spaced-apart jaws selectively movable toward and away from a portion of a tubular member within the housing, each jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, each slip apparatus including die apparatus movably mounted to a corresponding jaw, the die apparatus movable with respect to the jaws so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable; and such a top drive system including pipe handler apparatus disposed beneath the elevator apparatus.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a top drive system with a top drive, bails connected to and extending beneath the top drive, elevator apparatus connected to a lower end of the bails, wrenching apparatus interconnected with the top drive and positioned therebeneath, and a torque head connected to the top drive for selective rotation thereby and therewith, the torque head positioned beneath the wrenching apparatus, the torque head comprising a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including a plurality of spaced-apart jaws selectively movable toward and away from a portion of a tubular member within the housing, each jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, each slip apparatus including die apparatus movably mounted to a corresponding jaw, the die apparatus movable with respect to the jaws so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, and releasable connection apparatus for releasably connecting the torque head to another item; and such a top drive system including pipe handler apparatus disposed beneath the elevator apparatus.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a method for connecting a first tubular member to a second tubular member, the method including engaging the first tubular member with a first elevator secured to and beneath a second elevator, the second elevator comprising a component of a top drive system, the top drive system comprising a top drive, bails connected to and extending beneath the top drive, elevator apparatus connected to a lower end of the bails, wrenching apparatus interconnected with the top drive and positioned therebeneath, and a torque head connected to the top drive for selective rotation thereby and therewith, the torque head positioned beneath the wrenching apparatus, the torque head comprising a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including at least one jaw selectively movable toward and away from a portion of a tubular member within the housing, the at least one jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, the slip apparatus including die apparatus movably mounted to the at least one jaw, the die apparatus movable with respect to the at least one jaw so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, lifting the first tubular member above the second tubular member, the second tubular member held in position by a spider, lowering the top drive system so an upper end of the first tubular member enters the torque head and gripping said upper end with the torque head, lowering with the top drive the first tubular member so that a lower threaded end thereof enters an upper threaded end of the second tubular member, and rotating the first tubular member with the top drive to threadedly connect the first tubular member to the second tubular member; such a method including facilitating positioning of the first tubular member with pipe handling apparatus selectively engaging the first tubular member; such a method wherein the top drive is movably mounted in a rig and the spider is a flush mounted spider on a rig floor; such a method wherein the second tubular member is a top tubular of a tubular string extending down into earth; and/or such a method wherein the tubular members are casing.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a method for disconnecting a first tubular member from a second tubular member, the method including engaging a top end of the first tubular member with a torque head of a top drive system, the top drive system comprising a top drive bails connected to and extending beneath the top drive, elevator apparatus connected to a lower end of the bails, wrenching apparatus interconnected with the top drive and positioned therebeneath, and a torque head connected to the top drive for selective rotation thereby and therewith, the torque head positioned beneath the wrenching apparatus, the torque head comprising a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including at least one jaw selectively movable toward and away from a portion of a tubular member within the housing, the at least one jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, the slip apparatus including die apparatus movably mounted thereto, the die apparatus movable with respect to the at least one jaw so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, rotating the first tubular with the top drive to disconnect the first tubular from the second tubular.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a method for connecting a first tubular member to a second tubular member, the method including engaging the first tubular member with a first elevator secured to and beneath a second elevator, the second elevator comprising a component of a top drive system, the top drive system comprising a top drive, bails connected to and extending beneath the top drive, elevator apparatus connected to a lower end of the bails, wrenching apparatus interconnected with the top drive and positioned therebeneath, and a torque head connected to the top drive for selective rotation thereby and therewith, the torque head positioned beneath the wrenching apparatus, the torque head comprising a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including a plurality of spaced-apart jaws selectively movable toward and away from a portion of a tubular member within the housing, each jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, each slip apparatus including die apparatus movably mounted to a corresponding jaw, the die apparatus movable with respect to the jaws so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, and releasable connection apparatus for releasably connecting the torque head to another item, lifting the first tubular member above the second tubular member, the second tubular member held in position by a spider, lowering the top drive system so an upper end of the first tubular member enters the torque head and gripping said upper end with the torque head, lowering with the top drive the first tubular member so that a lower threaded end thereof enters an upper threaded end of the second tubular member, and rotating the first tubular member with the top drive to threadedly connect the first tubular member to the second tubular member.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a method for disconnecting a first tubular member from a second tubular member, the method including engaging a top end of the first tubular member with a torque head of a top drive system, the top drive system comprising a top drive, bails connected to and extending beneath the top drive, elevator apparatus connected to a lower end of the bails, wrenching apparatus interconnected with the top drive and positioned therebeneath, and a torque head connected to the top drive for selective rotation thereby and therewith, the torque head positioned beneath the wrenching apparatus, the torque head comprising a housing, grip mechanism secured within the housing, the grip mechanism for selectively gripping a tubular member, the grip mechanism including a plurality of spaced-apart jaws selectively movable toward and away from a portion of a tubular member within the housing, each jaw having mounted thereon slip apparatus for engaging the portion of the tubular member, each slip apparatus including die apparatus movably mounted to a corresponding jaw, the die apparatus movable with respect to the jaws so that relative movement of the tubular with respect to the torque head is possible to the extent that the die apparatus is movable, and releasable connection apparatus for releasably connecting the torque head to another item, and rotating the first tubular with the top drive to disconnect the first tubular from the second tubular.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a coupler device for coupling a torquing device to an item to be rotated thereby, the coupler device with a body with a first end and a second end, a recess in the first end of the body, a shaft with a shaft first end and a shaft second end, at least part of the shaft within the recess of the body, a clutch apparatus in the recess of the body, and clutch energizing apparatus for energizing the clutch apparatus; clutch deenergizing apparatus for deenergizing the clutch apparatus; and/or such a coupler device with the clutch apparatus having a plurality of spaced-apart shaft clutch plates connected to the shaft and projecting out therefrom into the recess of the body, a plurality of spaced-apart body clutch plates connected to and projecting inwardly into the recess of the body, and the plurality of spaced-apart shaft clutch plates interleaved with the plurality of spaced-apart body clutch plates.
In conclusion, therefore, it is seen that the present invention and the embodiments disclosed herein and those covered by the appended claims are well adapted to carry out the objectives and obtain the ends set forth. Certain changes can be made in the subject matter without departing from the spirit and the scope of this invention. It is realized that changes are possible within the scope of this invention and it is further intended that each element or step recited in any of the following claims is to be understood as referring to all equivalent elements or steps. The following claims are intended to cover the invention as broadly as legally possible in whatever form it may be utilized. The invention claimed herein is new and novel in accordance with 35 U.S.C. § 102 and satisfies the conditions for patentability in § 102. The invention claimed herein is not obvious in accordance with 35 U.S.C. § 103 and satisfies the conditions for patentability in § 103. This specification and the claims that follow are in accordance with all of the requirements of 35 U.S.C. § 112. The inventors may rely on the Doctrine of Equivalents to determine and assess the scope of their invention and of the claims that follow as they may pertain to apparatus not materially departing from, but outside of, the literal scope of the invention as set forth in the following claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 10/389,483, filed Mar. 14, 2003, which is a continuation of co-pending U.S. patent application Ser. No. 09/550,721, filed Apr. 17, 2000, now U.S. Pat. No. 6,536,520. The aforementioned related patent applications are herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10389483 | Mar 2003 | US |
Child | 11932619 | US | |
Parent | 09550721 | Apr 2000 | US |
Child | 10389483 | US |