1. Field of the Invention
Embodiments of the present invention generally relate to methods and apparatus for improving top drive operations.
2. Description of the Related Art
It is known in the industry to use top drive systems to rotate a drill string to form a borehole. Top drive systems are equipped with a motor to provide torque for rotating the drilling string. The quill of the top drive is typically threadedly connected to an upper end of the drill pipe in order to transmit torque to the drill pipe. Top drives may also be used in a drilling with casing operation to rotate the casing.
To drill with casing, most existing top drives use a threaded crossover adapter to connect to the casing. This is because the quill of the top drives is typically not sized to connect with the threads of the casing. The crossover adapter is design to alleviate this problem. Generally, one end of the crossover adapter is designed to connect with the quill, while the other end is designed to connect with the casing. In this respect, the top drive may be adapted to retain a casing using a threaded connection.
However, the process of connecting and disconnecting a casing using a threaded connection is time consuming. For example, each time a new casing is added, the casing string must be disconnected from the crossover adapter. Thereafter, the crossover must be threaded to the new casing before the casing string may be run. Furthermore, the threading process also increases the likelihood of damage to the threads, thereby increasing the potential for downtime.
As an alternative to the threaded connection, top drives may be equipped with tubular gripping heads to facilitate the exchange of wellbore tubulars such as casing or drill pipe. Generally, tubular gripping heads have an adapter for connection to the quill of top drive and gripping members for gripping the wellbore tubular. Tubular gripping heads include an external gripping device such as a torque head or an internal gripping device such as a spear. An exemplary torque head is described in U.S. Patent Application Publication No. 2005/0257933, filed by Pietras on May 20, 2004, which is herein incorporated by reference in its entirety. An exemplary spear is described in U.S. Patent Application Publication Number US 2005/0269105, filed by Pietras on May 13, 2005, which is herein incorporated by reference in its entirety.
In most cases, the adapter of the tubular gripping head connects to the quill of the top drive using a threaded connection. The adapter may be connected to the quill either directly or indirectly, e.g., through another component such as a sacrificial saver sub. One problem that may occur with the threaded connection is inadvertent breakout of that connection during operation. For example, in a drilling with casing operation, a casing connection may be required to be backed out (i.e., unthreaded) either during the pulling of a casing string or to correct an unacceptable makeup. It may be possible that the left hand torque required to break out the casing connection exceeds the breakout torque of the connection between the adapter and the quill, thereby inadvertently disconnecting the adapter from the quill and creating a hazardous situation on the rig.
There is a need, therefore, for methods and apparatus for ensuring safe operation of a top drive.
Embodiments of the present invention generally relate to methods and apparatus for improving top drive operations. In one embodiment a method of ensuring safe operation of a top drive includes operating a top drive, thereby exerting torque on a first tubular to makeup or breakout a first threaded connection between the first tubular and a second tubular. The method further includes monitoring for break-out of a second connection between a quill of the top drive and the first tubular; and stopping operation of the top drive and/or notifying an operator of the top drive if break-out of the second connection is detected.
In another embodiment, a method of ensuring safe operation of a top drive includes operating a top drive, thereby rotating a quill of the top drive. The quill of the top drive is connected to a torque head or a spear. Hydraulic communication between the torque head or spear and a hydraulic pump is provided by a swivel. A bearing is disposed between a housing and a shaft of the swivel. The method further includes determining acceptability of operation of the bearing by monitoring a torque exerted on the swivel housing by the bearing; and stopping operation of the top drive and/or notifying an operator of the top drive if the bearing operation is unacceptable.
In another embodiment, a torque head or spear for use with a top drive includes a body having an end for forming a connection with a quill of the top drive; a gripping mechanism operably connected to the body for longitudinally and rotationally gripping a tubular; and a computer configured to perform an operation. The operation includes monitoring for break-out of the connection; and stopping operation of the top drive and/or notifying an operator of the top drive if break-out of the connection is detected.
In another embodiment, a torque head or spear for use with a top drive includes a body having an end for forming a connection with a quill of the top drive; a gripping mechanism operably connected to the body for longitudinally and rotationally gripping a tubular; and a swivel. The swivel includes a housing; a shaft disposed in the housing and connected to the body; a bearing disposed between the shaft and the housing; and a strain gage disposed on the housing and operable to indicate torque exerted on the housing by the bearing.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The drilling rig 10 includes a traveling block 35 suspended by cables 75 above the rig floor 20. The traveling block 35 holds the top drive 50 above the rig floor 20 and may be caused to move the top drive 50 longitudinally. The top drive 50 may be supported by the travelling block 35 using a swivel which allows injection of drilling fluid into the top drive 50. The top drive 50 includes a motor 80 which is used to rotate the casing 30, 65 at various stages of the operation, such as during drilling with casing or while making up or breaking out a connection between the casings 30, 65. A railing system (partially shown) is coupled to the top drive 50 to guide the longitudinal movement of the top drive 50 and to prevent the top drive 50 from rotational movement during rotation of the casings 30, 65.
Disposed below the top drive 50 is a tubular gripping member such as a torque head 40. The torque head 40 may be utilized to grip an upper portion of the casing 30 and impart torque from the top drive to the casing 30. The torque head 40 may be coupled to an elevator 70 using one or more bails 85 to facilitate the movement of the casing 30 above the rig floor 20. In another embodiment, the bails 85 may be coupled to the top drive 50 or components attached thereto. Additionally, the rig 10 may include a pipe handling arm 100 to assist in aligning the tubulars 30, 65 for connection. In must be noted that other tubular gripping members such as a spear are contemplated for use with the top drive. An exemplary torque head suitable for use with a top drive 50 is disclosed in U.S. Patent Application Publication No. 2005/0257933, filed by Pietras on May 20, 2004, which is herein incorporated by reference in its entirety. An exemplary spear is described in U.S. Patent Application Publication Number US 2005/0269105, filed by Pietras on May 13, 2005, which is herein incorporated by reference in its entirety.
Torque Sub
The threaded box 610a receives the quill of the top drive 50, thereby forming a rotational connection therewith. Other equipment, such as a thread saver sub or a thread compensator (not shown), may be connected between the torque sub/swivel 600 and the quill. The pin 610e is received by a connector of the torque head 40, thereby forming a rotational connection therewith. A failsafe, such as set screws, may be added to the toque sub 610/torque head 40 connection. The groove 610b receives a secondary coil 630b (see
The shield 610g is disposed proximate to the outer surface of the reduced diameter portion 610d. The shield 610g may be applied as a coating or thick film over strain gages 680. Disposed between the shield 610g and the sleeve 610f are electronic components 635,640 (see
The electrical power coupling 630 is an inductive energy transfer device. Even though the coupling 630 transfers energy between the stationary interface 615 and the rotatable torque shaft 610, the coupling 630 is devoid of any mechanical contact between the interface 615 and the torque shaft 610. In general, the coupling 630 acts similar to a common transformer in that it employs electromagnetic induction to transfer electrical energy from one circuit, via its primary coil 630a, to another, via its secondary coil 630b, and does so without direct connection between circuits. The coupling 630 includes the secondary coil 630b mounted on the rotatable torque shaft 610. The primary 630a and secondary 630b coils are structurally decoupled from each other.
The primary coil 630a may be encased in a polymer 627a, such as epoxy. The secondary coil 630b may be wrapped around a coil housing 627b disposed in the groove 610b. The coil housing 627b is made from a polymer and may be assembled from two halves to facilitate insertion around the groove 610b. Optionally, the secondary coil 630b is then molded in the coil housing 627b with a polymer. The primary 630a and secondary coils 630b are made from an electrically conductive material, such as copper, copper alloy, aluminum, or aluminum alloy. The primary 630a and/or secondary 630b coils may be jacketed with an insulating polymer. In operation, the alternating current (AC) signal generated by sine wave generator 650 is applied to the primary coil 630a. When the AC flows through the primary coil 630a, the resulting magnetic flux induces an AC signal across the secondary coil 630b. The induced voltage causes a current to flow to rectifier and direct current (DC) voltage regulator (DCRR) 635. A constant power is transmitted to the DCRR 635, even when torque shaft 610 is rotated by the top drive 100. The primary coil 630a and the secondary coil 630b have their parameters (i.e., number of wrapped wires) selected so that an appropriate voltage may be generated by the sine wave generator 650 and applied to the primary coil 630a to develop an output signal across the secondary coil 630b.
The DCRR 635 converts the induced AC signal from the secondary coil 630b into a suitable DC signal for use by the other electrical components of the torque shaft 610. In one embodiment, the DCRR outputs a first signal to the strain gages 680 and a second signal to an amplifier and microprocessor controller (AMC) 640. The first signal is split into sub-signals which flow across the strain gages 680, are then amplified by the amplifier 640, and are fed to the controller 640. The controller 640 converts the analog signals from the strain gages 680 into digital signals, multiplexes them into a data stream, and outputs the data stream to a modem associated with controller 640 (preferably a radio frequency modem). The modem modulates the data stream for transmission from antenna 645a. The antenna 645a transmits the encoded data stream to an antenna 645b disposed in the interface 615. The antenna 645b sends the received data stream to a modem, which demodulates the data signal and outputs it to a joint analyzer controller 655. Alternatively, the analog signals from the strain gages may be multiplexed and modulated without conversion to digital format. Alternatively, conventional slip rings, an electric swivel coupling, roll rings, or transmitters using fluid metal may be used to transfer data from the shaft 610 to the interface 615.
The torque shaft may further include a turns counter 665, 670. The turns counter may include a turns gear 665 and a proximity sensor 670. The turns gear 665 is rotationally coupled to the torque shaft 610. The proximity sensor 670 is disposed in the interface 615 for sensing movement of the gear 665. The sensitivity of the gear/sensor 665,670 arrangement may be, for example, one-tenth of a turn; one-hundredth of a turn; or one-thousandth of a turn. However, other sensitivities are contemplated. The sensor 670 is adapted to send an output signal to the joint analyzer controller 655. It is contemplated that a friction wheel/encoder device (see
The controller 655 is adapted to process the data from the strain gages 680 and the proximity sensor 670 to calculate respective torque, longitudinal load, and turns values therefrom. For example, the controller 655 may de-code the data stream from the strain gages 680, combine that data stream with the turns data, and re-format the data into a usable input (i.e., analog, field bus, or Ethernet) for a make-up computer system 706 (see
The torque sub 600 is also disclosed in U.S. Patent App. Pub. No. 2007/0251701 filed by Jahn, et al. on Apr. 27, 2007, which application is herein incorporated by reference in its entirety.
Tubular Makeup System
Predetermined values may be input to the computer 716 via one or more input devices 718, such as a keypad. Illustrative predetermined values which may be input, by an operator or otherwise, include a delta torque value 724, a delta turns value 726, minimum and maximum turns values 728 and minimum and maximum torque values 730. During makeup of a tubing assembly, various output may be observed by an operator on output device, such as a display screen, which may be one of a plurality of output devices 720. The format and content of the displayed output may vary in different embodiments. By way of example, an operator may observe the various predefined values which have been input for a particular tubing connection. Further, the operator may observe graphical information such as a representation of the torque rate curve 500 and the torque rate differential curve 500a. The plurality of output devices 720 may also include a printer such as a strip chart recorder or a digital printer, or a plotter, such as an x-y plotter, to provide a hard copy output. The plurality of output devices 720 may further include a horn or other audio equipment to alert the operator of significant events occurring during make-up, such as the shoulder condition, the terminal connection position and/or a bad connection.
Upon the occurrence of a predefined event(s), the computer system 706 may output a dump signal 722 to automatically shut down the top drive unit 100. For example, dump signal 722 may be issued upon the terminal connection position and/or a bad connection. The comparison of measured turn count values and torque values with respect to predetermined values is performed by one or more functional units of the computer 716. The functional units may generally be implemented as hardware, software or a combination thereof. By way of illustration of a particular embodiment, the functional units are software. In one embodiment, the functional units include a torque-turns plotter algorithm 732, a process monitor 734, a torque rate differential calculator 736, a smoothing algorithm 738, a sampler 740, a comparator 742, a deflection compensator 752, and an interlock 749. It should be understood, however, that although described separately, the functions of one or more functional units may in fact be performed by a single unit, and that separate units are shown and described herein for purposes of clarity and illustration. As such, the functional units 732-742, 749, and 752 may be considered logical representations, rather than well-defined and individually distinguishable components of software or hardware.
The frequency with which torque and rotation are measured may be specified by the sampler 740. The sampler 740 may be configurable, so that an operator may input a desired sampling frequency. The measured torque and rotation values may be stored as a paired set in a buffer area of computer memory. Further, the rate of change of torque with rotation (i.e., a derivative) may be calculated for each paired set of measurements by the torque rate differential calculator 736. At least two measurements are needed before a rate of change calculation can be made. In one embodiment, the smoothing algorithm 738 operates to smooth the derivative curve (e.g., by way of a running average). These three values (torque, rotation, and rate of change of torque) may then be plotted by the plotter 732 for display on the output device 720.
In one embodiment, the rotation value may be corrected to account for system deflections using the deflection compensator 752. As discussed above, torque is applied to a tubular 30 (e.g., casing) using a top drive 50. The top drive 50 may experience deflection which is inherently added to the rotation value provided by the turns gear 665 or other turn counting device. Further, a top drive unit 50 will generally apply the torque from the end of the tubular that is distal from the end that is being made. Because the length of the tubular may range from about 20 ft. to about 90 ft., deflection of the tubular may occur and will also be inherently added to the rotation value provided by the turns gear 665. For the sake of simplicity, these two deflections will collectively be referred to as system deflection. In some instances, the system deflection may cause an incorrect reading of the tubular makeup process, which could result in a damaged connection.
To compensate for the system deflection, the deflection compensator 752 utilizes a measured torque value to reference a predefined value (or formula) to find (or calculate) the system deflection for the measured torque value. The deflection compensator 652 includes a database of predefined values or a formula derived therefrom for various torque and system deflections. These values (or formula) may be calculated theoretically or measured empirically. Empirical measurement may be accomplished by substituting a rigid member, e.g., a blank tubular, for the tubular and causing the top drive unit 50 to exert a range of torque corresponding to a range that would be exerted on the tubular to properly make-up a connection. The torque and rotation values measured would then be monitored and recorded in a database. The deflection of the tubular may also be added into the system deflection.
Alternatively, instead of using a blank for testing the top drive, the end of the tubular distal from the top drive unit 50 may simply be locked into a spider. The top drive unit 50 may then be operated across the desired torque range while the resulting torque and rotation values are measured and recorded. The measured rotation value is the rotational deflection of both the top drive unit 50 and the tubular. Alternatively, the deflection compensator 752 may only include a formula or database of torques and deflections for the tubular. The theoretical formula for deflection of the tubular may be pre-programmed into the deflection compensator 752 for a separate calculation of the deflection of the tubular. Theoretical formulas for this deflection may be readily available to a person of ordinary skill in the art. The calculated torsional deflection may then be added to the top drive deflection to calculate the system deflection.
After the system deflection value is determined from the measured torque value, the deflection compensator 752 then subtracts the system deflection value from the measured rotation value to calculate a corrected rotation value. The three measured values—torque, rotation, and rate of change of torque—are then compared by the comparator 742, either continuously or at selected rotational positions, with predetermined values. For example, the predetermined values may be minimum and maximum torque values and minimum and maximum turn values.
Based on the comparison of measured/calculated/corrected values with predefined values, the process monitor 734 determines the occurrence of various events and whether to continue rotation or abort the makeup. In one embodiment, the process monitor 734 includes a thread engagement detection algorithm 744, a seal detection algorithm 746 and a shoulder detection algorithm 748. The thread engagement detection algorithm 744 monitors for thread engagement of the two threaded members. Upon detection of thread engagement a first marker is stored. The marker may be quantified, for example, by time, rotation, torque, a derivative of torque or time, or a combination of any such quantifications. During continued rotation, the seal detection algorithm 746 monitors for the seal condition. This may be accomplished by comparing the calculated derivative (rate of change of torque) with a predetermined threshold seal condition value. A second marker indicating the seal condition is stored when the seal condition is detected.
At this point, the turns value and torque value at the seal condition may be evaluated by the connection evaluator 750. For example, a determination may be made as to whether the corrected turns value and/or torque value are within specified limits. The specified limits may be predetermined, or based off of a value measured during makeup. If the connection evaluator 750 determines a bad connection, rotation may be terminated. Otherwise rotation continues and the shoulder detection algorithm 748 monitors for shoulder condition. This may be accomplished by comparing the calculated derivative (rate of change of torque) with a predetermined threshold shoulder condition value. When the shoulder condition is detected, a third marker indicating the shoulder condition is stored. The connection evaluator 750 may then determine whether the turns value and torque value at the shoulder condition are acceptable.
In one embodiment, the connection evaluator 750 determines whether the change in torque and rotation between these second and third markers are within a predetermined acceptable range. If the values, or the change in values, are not acceptable, the connection evaluator 750 indicates a bad connection. If, however, the values/change are/is acceptable, the target calculator 752 calculates a target torque value and/or target turns value. The target value is calculated by adding a predetermined delta value (torque or turns) to a measured reference value(s). The measured reference value may be the measured torque value or turns value corresponding to the detected shoulder condition. In one embodiment, a target torque value and a target turns value are calculated based off of the measured torque value and turns value, respectively, corresponding to the detected shoulder condition.
Upon continuing rotation, the target detector 754 monitors for the calculated target value(s). Once the target value is reached, rotation is terminated. In the event both a target torque value and a target turns value are used for a given makeup, rotation may continue upon reaching the first target or until reaching the second target, so long as both values (torque and turns) stay within an acceptable range. Alternatively, the deflection compensator 752 may not be activated until after the shoulder condition has been detected.
Whether a target value is based on torque, turns or a combination, the target values are not predefined, i.e., known in advance of determining that the shoulder condition has been reached. In contrast, the delta torque and delta turns values, which are added to the corresponding torque/turn value as measured when the shoulder condition is reached, are predetermined. In one embodiment, these predetermined values are empirically derived based on the geometry and characteristics of material (e.g., strength) of two threaded members being threaded together. Exemplary embodiments of the tubular makeup system are disclosed in U.S. Provisional Patent Application Ser. No. 60/763,306, filed on Jan. 30, 2006, which application is herein incorporated by reference in its entirety.
Torque Meter
These rotational values may be transmitted to the joint make-up system 700 for analysis. Due to the arrangement of the upper 905a and lower 905b turns counters, a torsional deflection of the first tubular 402 may be measured. This is found by subtracting the turns measured by the lower turns counter 905b from the turns measured by the upper turns counter 905a. By turns measurement, it is meant that the rotational value from each turns counter 905a,b has been converted to a rotational value of the first tubular 402. Once the torsional deflection is known a controller or computer 706 may calculate the torque exerted on the first tubular by the top drive 100 from geometry and material properties of the first tubular. If a length of the tubular 402 varies, the length may be measured and input manually (i.e. using a rope scale) or electronically using a position signal from the draw works 105. The turns signal used for monitoring the make-up process would be that from the bottom turns counter 905b, since the measurement would not be skewed by torsional deflection of the first tubular 402.
Interlock Operation
At step 5-1, the interlock 749 monitors the output torque of the top drive 50 and compares the output torque to a predetermined or programmed output torque. As discussed above, this act may be performed using the torque sub 600, torque meter 900, or calculated from input power 713. A left-hand direction of the output torque may be indicated by a negative torque value. Examples of the predetermined torque are any left-hand torque and a maximum (minimum if positive convention) breakout torque of the top drive connections. If the monitored torque is less than (assuming negative convention for left hand torque) the predetermined torque, the interlock proceeds to step 5-2 of the control logic.
At step 5-2, the interlock detects any sudden change (i.e., increase for negative convention or decrease for positive convention or absolute value) in the torque value during operation. A sudden increase in torque at the torque head 40 indicates a breakout of either one of the top drive connections or the connection between the tubulars 30, 65. The interlock may calculate a derivate of the torque with respect to time or with respect to turns to aid in detecting the sudden increase. A sudden increase in torque may be detected by monitoring the derivative for a change in sign. For example, assuming a negative convention during a breakout operation, the derivative may be a substantially constant negative value until one of the connections breaks. At or near breakout, the derivative will exhibit an abrupt transition to a positive value. Once the breakout is determined, the interlock proceeds to step 5-3.
At step 5-3, the interlock 749 detects for rotation associated with the sudden change in torque so that the interlock may determine if the breakout is at the connection between the tubulars 30, 65 or if the breakout is at one of the top drive connections. If the torque sub 600 is being used, the reading from the sensor 670 will allow the interlock to ascertain where the breakout is. If the breakout is between the torque sub 600 and the top drive 50, then the quill will rotate while the torque sub remains stationary. If the breakout is at the connection between the tubulars 30, 65, then the torque sub 600 will rotate with the quill and the first tubular 30. If the either the torque meter 900 or the power input is used to calculate the output torque, then the interlock 749 may use the upper turns counter 905a to ascertain where the breakout is. Alternatively or additionally, if the torque meter 900 is used, then the interlock 749 may use the lower turns counter 905b to determine if the first tubular 30 is rotating. The interlock 749 may calculate a differential of rotation values or a rotational velocity of the torque sub 600/torque head 40 and compare the differential rotation/rotational velocity to a predetermined number (i.e., zero or near zero) to determine if the torque sub 600/torque head 40 is rotating.
If the interlock 749 determines that the breakout is at one of the top drive connections (i.e., the torque head 40 or the torque sub 600 is not rotating), then the interlock proceeds to step 5-4. At step 5-4, the interlock 749 may then sound an audible alarm and/or display a visual signal to the operator to stop rotation of the top drive 50 to prevent back out of the top drive connections. Additionally or alternatively, the interlock 749 may automatically stop the top drive 50. If the interlock 749 determines that the breakout is at the tubular connection 30, 65, then the interlock allows the breakout operation to proceed. The interlock may utilize fuzzy logic in performing the control logic of
In an alternative embodiment (not shown), monitoring output torque of the top drive is not required. This alternative may be performed using the torque sub 600, torque meter 900, or upper turns counter 905a configurations. This alternative may also be used in addition to the logic of
In a second alternative embodiment applicable to make-up systems 700 using the torque sub 600 or the torque meter 900, the interlock 749 may calculate a differential between the torque value measured from the torque sub 600 or the calculated torque value from the torque meter 900 and the calculated output torque of the top drive 50. The interlock 749 may also calculate a turns differential as discussed in the first alternative. The interlock 749 may then compare the two delta values to respective predetermined values and sound an alarm and/or halt operation of the top drive 50 if the two delta values are less than the predetermined values.
In a third alternative embodiment, a strain gage 785 may be bonded to the swivel housing 605 (including the swivel bracket 605a) so that the interlock 749 may monitor performance of the swivel bearings. The bearing performance may be monitored during any operation of the top drive, i.e., making up/breaking out connections or drilling (with drill pipe or casing). Discussion of torque relative to the swivel bearings is done assuming right-hand (positive) torque is being applied as is typical for operation of a top drive 50. This alternative may be performed in addition to any of the breakout monitoring, discussed above. If the swivel bearings should fail, excessive torque may be transferred from the top drive 50 to the bracket 605a, thereby causing substantial damage to the bracket 605a and possibly the swivel 600 as well as creating a hazard on the rig. The strain gage 785 is positioned on the bracket 605a to provide a signal 712 to the computer 716 indicative of the torque exerted on the swivel housing 605 by the top drive 50 through the swivel bearings. The interlock 749 may receive the signal 712 and calculate the torque exerted on the swivel housing 605 from predetermined structural properties of the swivel housing. The interlock 749 may calculate a differential between the output torque of the top drive 50 (calculated or measured) and the swivel torque.
If the bearings are functioning properly, this differential should be relatively large as friction in the bearings (and seals) should only transmit a fraction of the top drive torque. If the swivel bearings should start to fail, this differential will begin to decrease. The interlock 749 may detect failure of the swivel bearings by comparing the differential to a predetermined value. Alternatively, the interlock 749 may calculate a derivative of the differential with respect to time or turns and compare the derivative to a predetermined value. Alternatively, the interlock 749 may divide the swivel torque by the top drive torque to create a ratio (or percentage) and compare the ratio to a predetermined ratio. Failure of the bearing would be indicated by ratio greater than the predetermined ratio. The interlock 749 may only monitor swivel performance above a predetermined output torque of the top drive 50 to eliminate false alarms. In any event, if the interlock 749 detects failure of the swivel bearings, then the interlock 749 may sound/display an alarm and/or halt operation of the top drive 50. Alternatively, the interlock 749 may compare the calculated torque value to a predetermined value (without regard to the top drive torque) to determine failure of the swivel bearings.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims the benefit of U.S. Prov. Pat. App. No. 60/866,322 (Atty. Dock. No. WEAT/0749L), entitled “Top Drive Backout Interlock Method”, filed on Nov. 17, 2006, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60866322 | Nov 2006 | US |