Top drive torque booster

Information

  • Patent Grant
  • 7845418
  • Patent Number
    7,845,418
  • Date Filed
    Wednesday, January 18, 2006
    18 years ago
  • Date Issued
    Tuesday, December 7, 2010
    14 years ago
Abstract
A method and apparatus for providing additional torque in a top drive system for rotating a tubular during tubular drilling, running, and/or handling operations. In one embodiment, a gear arrangement is operatively connected to a top drive of the top drive system to increase the amount of available torque for rotating a tubular. In another embodiment, a gear box is operatively connected to the top drive to boost the amount of torque available for rotating the tubular.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to obtaining hydrocarbon fluid from a wellbore. More specifically, embodiments of the present invention relate to connecting tubulars and drilling the wellbore using tubulars.


2. Description of the Related Art


To obtain hydrocarbon fluid from the earth, a wellbore is formed in the earth. The wellbore is typically drilled using a drill string having a drill bit connected to its lower end. The drill string is rotated and lowered into the earth to form the wellbore.


After the wellbore is drilled to a first depth, the drill string is removed from the wellbore. To prevent collapse of the wellbore wall, casing is often used to line the wellbore. Lining the wellbore involves lowering the casing into the drilled-out wellbore and setting the casing therein.


Casing is usually provided by the manufacturer in sections of a predetermined length; however, the length of casing which is desired for use in lining a section of the wellbore is often longer than the section length. To obtain the desired length of casing for use in lining the wellbore section, casing sections are often connected to one another to form a casing string. Typical casing sections are connected to one another by threaded connections.


Threadedly connecting casing sections to one another involves rotating one casing section relative to the other casing section. A first casing section is lowered partially into the wellbore and gripped by a gripping mechanism such as a spider to prevent rotational movement of the first casing section. The spider is located on or in the rig floor of a drilling rig disposed over the wellbore. A second casing section is then gripped and rotated relative to the first casing section to form the casing string by connecting the upper end of the first casing section to the lower end of the second casing section. Additional casing sections may be threadedly connected to the casing string in the same manner to add to the length of the casing string.


Various tools are utilized to rotate casing sections to make up these threaded connections (or break out the threaded connections when removing casing sections from the casing string) and to rotate the drill string to form the wellbore. One such tool is a top drive, which includes a motor for providing rotational force to the casing or drill string (both hereinafter referred to as “tubular”). The top drive is connected to the drilling rig and moveable relative thereto.


The lower end of the top drive is usually operatively connected to an apparatus for gripping the tubular so that the top drive is capable of rotating the tubular. The gripping apparatus is rotatable by the top drive relative to the top drive and the drilling rig.


Recently, an alternative method of lining the wellbore is proposed which involves drilling the wellbore with the casing which is used to line the wellbore, termed “drilling with casing.” In this method, the casing is rotated and lowered into the earth to form the wellbore. Casing sections may be threadedly connected to one another to form a casing string of a desired length or disconnected from one another to reduce the length of the casing string in a casing makeup or breakout operation. Drilling with casing is advantageous because drilling the wellbore and lining the wellbore is accomplished in only one step, saving valuable rig time and resources.


Some have suggested using the gripping apparatus in a drilling with casing operation to grip the casing and using the top drive to rotate the casing when drilling the casing into the wellbore and when making up or breaking out threaded connections. Using the gripping apparatus and the top drive in a drilling with casing operation is particularly attractive if the gripping apparatus and the top drive are capable of fluid flow therethrough to allow the typical circulation of fluid through the wellbore while drilling. The circulation of fluid through the casing and the wellbore removes the cuttings from the wellbore, the cuttings resulting from the drilling into the earth to form the wellbore.


Regardless of whether the operation involves drilling with casing or typical drilling and subsequent casing of the wellbore, existing top drives are only capable of imparting a specific range of torque to the drill string or casing. Often, because of their limited torque-providing capability, the existing top drives fail to supply sufficient torque to the drill string and/or casing to adequately affect the tubular drilling, running, and makeup and breakout operations. High output torque from the top drive is especially desirable for drilling with casing operations, as existing casing connections require torque above the capabilities of most currently-installed drives.


Therefore, it is desirable to provide additional torque capacity to a top drive system for use in rotating a tubular during running, drilling, and/or pipe handling operations. It is further desirable to provide this additional torque capacity for retrofitting to existing top drive systems.


SUMMARY OF THE INVENTION

In one embodiment, a top drive assembly comprises a top drive capable of providing a first torque to a tubular and a torque boosting mechanism operatively connected to the top drive, the torque boosting mechanism capable of providing a second, additional torque to the tubular.


In another embodiment, a method of manipulating a tubular comprises a top drive assembly comprising a top drive operatively connected to a torque altering mechanism; providing a first torque to the tubular using the top drive; and selectively adding a second torque to the tubular using the torque altering mechanism.


In yet another embodiment, a method of selectively providing rotational force to a tubular comprises providing a first torque source operatively connected to a second torque source; rotating the tubular at a first torque by activating the first torque source; and selectively rotating the tubular at a second torque by activating the second torque source.


In yet another embodiment, a method of selectively providing rotational force to a wellbore tubular comprises providing a torque supplying mechanism having an output shaft; coupling a torque altering mechanism to the output shaft and the wellbore tubular; rotating the output shaft at a first speed; and activating the torque altering mechanism to rotate the wellbore tubular at a second speed.


In yet another embodiment, a method of selectively providing rotational force to a wellbore tubular comprises providing a torque supplying mechanism having an output shaft; coupling a torque altering mechanism to the output shaft and the wellbore tubular; rotating the output shaft at a first torque; and activating the torque altering mechanism to rotate the wellbore tubular at a second torque.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a front section view of a first embodiment of a top drive system. The top drive system includes a motor/gear arrangement therein for boosting the torque capacity of the top drive system.



FIG. 2 is a side perspective view of the top drive system of the first embodiment.



FIG. 2A is a perspective view of a section of the top drive system of FIG. 2.



FIG. 3 is a front section view of a second embodiment of a top drive system. This top drive system includes a gear box therein for boosting the torque capacity of the top drive system.



FIG. 4 is a side perspective view of the top drive system of the second embodiment.





DETAILED DESCRIPTION

Embodiments of the present invention advantageously increase the torque capacity of a top drive system to permit increased torque impartation upon a tubular rotated by the top drive system. Embodiments of the present invention inexpensively and easily boost the torque capacity of an existing top drive system for tubular running, drilling, and/or handling operations.



FIGS. 1, 2, and 2A illustrate various views of a first embodiment of a top drive drilling system 5 for rotating a tubular 20. The top drive drilling system 5 includes a top drive 10 slidable over a track 15. The track 15 is connected to a drilling rig (not shown) which is located over a wellbore (not shown) formed in an earth formation. The top drive 10 is operatively connected at its upper end at the upper connecting member 27 to a draw works (not shown) extending from the drilling rig which is capable of lowering and raising the top drive 10 longitudinally over its track 15.


The top drive 10 is capable of rotating a top drive output shaft 25 to ultimately provide rotational force for rotating the tubular 20. A gear/motor arrangement 28 is disposed around the top drive output shaft 25. The top drive output shaft 25 is capable of applying an increased torque to the output shaft 25, as opposed to the torque applied to the output shaft 25 which is output by the top drive 10, due to the additional torque capacity provided by operation of the gear arrangement 28 (when the gear arrangement 28 is activated to act upon the top drive output shaft 25).


The top drive output shaft 25 may be operatively connected to a gripping head, which is shown as an externally-gripping torque head 35 (grippingly engages an external surface of the tubular) in FIGS. 1 and 2. The gripping head may instead be an internal gripping mechanism (grippingly engages an internal surface of the tubular) such as a spear, or any other type of gripping mechanism known to those skilled in the art. An exemplary spear is illustrated and described in co-pending U.S. patent application Ser. No. 10/967,387 filed on Oct. 18, 2004, which is herein incorporated by reference in its entirety. An example of a torque head is described and depicted in co-pending U.S. patent application Ser. No. 10/625,840 filed on Jul. 23, 2003, which is herein incorporated by reference in its entirety. Preferably, the gripping head is capable of gripping pipes of various diameters to allow use of the same gripping head for drilling as well as casing operations when conducting a conventional drilling operation. Furthermore, the gripping head is also preferably capable of fluid flow therethrough for use in a drilling with casing operation where fluid may flow into a bore of the casing through the top drive and the gripping head.


An external surface of the tubular 20 is shown grippingly engaged by the torque head 35. In this position, the tubular 20 may be rotated by the top drive drilling system 5 and/or a fluid may sealingly flow through the entire top drive drilling system 5 and into and through the tubular 20, as desired. Alternatively, the output shaft 25 may be connected directly to the tubular 20.


The gear arrangement 28 is more clearly shown in FIG. 2A. Surrounding the top drive output shaft 25 is a gear 40, which includes a plurality of teeth in its outer surface. A first gear 45 and optionally a second gear 50 are located on opposite sides of the outer surface of the gear 40 and also include a plurality of teeth in each of their outer surfaces. The teeth of the gears 45 and 50 are capable of cooperating or engaging with the teeth of the gear 40 to rotate the gear 40. The first and second gears 45 and 50 are preferably pinions, so that the gear 40 and the pinions 45 and 50 combine to form a gear and pinion arrangement.


The first gear 45 is a portion of a first gear drive 55, while the optional second gear 50 is a portion of an optional second gear drive 60. A first motor 65 of the first gear drive 55 is capable of providing rotational force to rotate the first gear 45, and an optional second motor 70 is capable of providing rotational force to rotate the optional second gear 50. The first and second gear drives 55 and 60, through the rotational force of the first and second gears 45 and 50, cooperate to rotate the gear 40. (When the second gear drive 60 is not utilized as part of embodiments of the present invention, only the first drive 55 rotates the first gear 45 and only the first gear 45 rotates the gear 40.)


The first motor 65 rests on a first support 66 extending from the top drive track 5 and includes a rotor (not shown) extending through the first support 66 and through the first gear 45. Likewise, the second motor 70 is located on a second support 71 extending from the track 15 and includes a rotor (not shown) extending through the second support 71 and through the second gear 50. The first support 66 may be disposed on an opposite side of the shaft 25 from the second support 71 (and so may their associated gear drives 55 and 60). Other support arrangements are within the scope of embodiments of the present invention, for example if only one gear drive 55 is utilized to rotate the gear 40.


The first and second motors 65 and 70 are capable of rotating their respective rotors with respect to the first and second supports 66 and 71 to rotate the first and second gears 45 and 50, respectively, thereby adding power to the system. The first and second motors 65 and 70 may be electrically, mechanically, and/or fluid powered by any method known to those skilled in the art. Preferably, the first and second motors 65 and 70 are fluid-powered.


In operation, referring to FIGS. 1 and 2, the tubular 20 is grippingly and sealingly engaged by the torque head 35. The torque head 35 may grippingly engage the tubular 20 by lowering the draw works towards the rig floor so that the torque head 35 envelops the tubular 20 and by then activating one or more slip arrangements to grip the tubular 20 within the torque head 35. The draw works is used to lower or raise the tubular 20 longitudinally while the tubular 20 is being gripped by the torque head 35 (or to pick up a tubular from the rig floor or from a rack away from the rig floor using the torque head 35). When it is desired to rotate the tubular 20 using the top drive drilling system 5, e.g., for drilling with a tubular (which may be casing) or for rotating a tubular relative to another tubular during a pipe handling operation (make-up or break-out operation), the top drive 10 is activated to rotate the top drive output shaft 25 at a first speed and provide a first torque to the top drive output shaft 25.


At any point during the pipe handling or drilling operation, if it is desired to apply additional torque to the tubular 20 (i.e., boost the amount of torque applied to the tubular 20), the first and second motors 65 and 70 are selectively activated to rotate the first and second gears 45 and 50. The teeth of the first and second gears 45 and 50 then cooperate with the teeth of the gear 40 to rotate the gear 40. The gear 40 applies the additional torque provided by the first and second gear drives 55 and 60 to the top drive output shaft 25. Therefore, when the gear arrangement 28 is activated, the amount of torque applied to the top drive output shaft 25 (and therefore the amount of torque applied to the tubular 20 via the torque head 35) is not limited to the amount of torque which the top drive 10 is capable of applying to the top drive output shaft 25 and tubular 20, but is instead equal to the sum of the amount of torque applied by the top drive 10 plus the amount of torque applied by the gear arrangement 28. The amount of torque applied by the gear arrangement 28 may be adjusted as desired before, during, or after the operation.


After applying the desired amount of torque to the tubular 20, the torque head 35 may be released from gripping engagement with the tubular 20. The torque head 35 may then be utilized to grippingly engage an additional tubular (not shown), and the top drive 10 and/or the gear arrangement 28 may again be activated to rotate the additional tubular using the desired amount of torque.



FIGS. 3 and 4 represent views of a second embodiment of a top drive drilling system 190 for rotating a tubular 120. The components of the second embodiment which are substantially the same as components of the first embodiment are represented by the same numbers, but in the “100” series. Therefore, the structures and operations of the track 115, top drive 110, torque head 135, and tubular 120 shown in FIGS. 3 and 4 are at least substantially the same as the structures and operations of the track 15, top drive 10, torque head 35, and tubular 20 shown and described above in relation to FIGS. 1-2A.


The difference between the first embodiment and the second embodiment is that the gear arrangement 28 of the first embodiment is replaced with a gear box 195 in the top drive drilling system 190 of the second embodiment, as shown in FIGS. 3 and 4. The gear box 195 is mounted to the track 115 by first and second supports 197 and 198 in FIGS. 3 and 4, although other support arrangements are within the scope of embodiments of the present invention. Another difference between the gear box 195 embodiment and the gear arrangement 28 embodiment is that the gear box 195 embodiment includes an input shaft 125 inputted into the gear box 195 and operatively connected to the top drive 110 and a separate output shaft 130 outputted from the gear box 195 and operatively connected to the gripping head 135. The shafts 125, 130 are capable of rotating at different speeds and at different torques from one another upon activation of the gear box 195 (the speed and torque of the tubular have an inverse relationship). Alternatively, the output shaft 130 may be connected directly to the tubular 20.


As described above in relation to the gear arrangement 28 of the first embodiment, the primary function of the gear box 195 is to increase the torque capacity of the top drive 110. To accomplish this task, the gear box 195 is capable of rotating the gear output shaft 130 at a lower rate of speed (but higher torque) than the speed at which the top drive is capable of rotating the top drive output shaft 125, which is the input shaft to the gear box 195.


The gear box 195 preferably is planetary with rotating seals, where an input shaft drives a planet and a ring gear drives an output shaft. Furthermore, the gear box 195 is preferably shiftable to allow switching to different speeds, for example switching from a 1:2 or 2:1 speed or torque ratio to a different speed or torque ratio so that the gear option is 1:1. Although any type of gear box known to those skilled in the art is usable with the present invention, an exemplary gear box usable as part of the present invention is preferably planetary and co-axial with an input and output shaft to change speed and torque, as shown and described in U.S. Pat. No. 5,385,514 issued on Jan. 31, 1995, which is herein incorporated by reference in its entirety. The gear box used as part of the present invention preferably is shiftable such as the gear box shown and described in U.S. Pat. No. 6,354,165 issued on Mar. 12, 2002, which is also herein incorporated by reference in its entirety.


An advantage of utilizing the gear box 195 as the torque booster is that the gear box 195 may be set to provide a given ratio of additional torque to the gear output shaft 130 relative to the torque provided to the top drive output shaft 125, e.g., the gear box 195 may provide an input to output torque ratio of 1:2 to double the torque (thereby decreasing the speed of rotation of the tubular by ½). It is contemplated that the gear box may also be used to alter the speed of the gear output shaft 130 such that torque is decreased, e.g., the gear box 195 may provide an input to output torque ratio of 2:1 to reduce the torque by half. An additional advantage in using the gear box 195 is that there are no exposed rotating parts involved with the operation of the gear box 195 itself.


The operation of the top drive drilling system 190 is similar to the operation of the top drive drilling system 5. When it is desirable to add to the amount of torque supplied by the top drive 110 for rotating the tubular 120, the gear box 195 is selectively activated to increase the amount of torque applied to the gear output shaft 130, torque head 135, and tubular 120. The gear box 195 possesses a bore therethrough to allow drilling fluid and/or wireline to pass through the gear box 195 during the drilling, casing, and/or pipe handling operation.


The first and second embodiments described above include various forms of a top drive torque booster, including specifically the gear box 195 and the gear arrangement 28. Other types of torque boosters known to those skilled in the art are usable as part of the present invention, including but not limited to chain connections (rotationally connecting the gears by chains when the gears are separated from one another) or any other torque-transmitting couplings, as well as any other gear mechanisms known to those skilled in the art.


The ability to apply additional torque afforded by adding a torque booster, regardless of the type, to the top drive system is especially advantageous in retrofitting existing top drives, which often possess a limited torque capacity, with additional torque capabilities. Increasing the torquing ability of the top drive 10, 110 is particularly useful in casing running and casing drilling operations, where additional torque is sometimes required to rotate the casing or connect casing threads. The torque booster is capable of monitoring and controlling the amount of torque provided to the tubular gripped by the gripping head.


In an alternate embodiment, the top drive may be eliminated in any of the above-described embodiments, and the torque booster may be utilized as the only device for providing torque to the tubular. In a further alternate embodiment, the gripping head may be eliminated and replaced by another type of tubular gripping mechanism, such as an elevator. Yet a further alternate embodiment involves including a gear reducer instead of the torque booster if it is desired to selectively decrease the amount of torque applied by the top drive.


The torque booster is usable in a drilling with casing, casing lowering, casing make-up or break-out, tubular or drill pipe make-up or break-out, tubular or drill pipe lowering, or tubular or drill pipe drilling operation, or any other operation which requires rotating, lowering, and/or drilling a tubular body for placement of or while placing the tubular body into a wellbore within a formation. Directional terms stated herein, including “upper” and “lower,” for example, are merely indications of relative movements of objects and are not limiting.


Although increasing the capacity of torque applicable by the top drive is accomplished by the gear box described above, it is also within the scope of embodiments of the present invention to merely use the gear box to decrease the amount of torque which it is necessary to apply to the tubular using the top drive during a given operation (to allow the top drive to operate below its torque capacity), thereupon reducing wear and tear on the top drive unit. Additionally, the gear box may be utilized as a spinner to spin the tubular without adding torque to the top drive by operating in neutral or by adding a lesser amount of torque for a portion of the threading operation, and then the speed of rotation of and torque to the tubular may be changed at the thread-makeup point by shifting the speed (torque) which the gear box provides to the tubular at this point. For example, the gear box may be shifted to change from a high speed output, low torque to a low speed output, high torque.


In another embodiment, a method of selectively providing rotational force to a wellbore tubular comprises providing a torque supplying mechanism having an output shaft; coupling a torque altering mechanism to the output shaft and the wellbore tubular; rotating the output shaft at a first speed; and activating the torque altering mechanism to rotate the wellbore tubular at a second speed.


In another embodiment, a method of selectively providing rotational force to a wellbore tubular comprises providing a torque supplying mechanism having an output shaft; coupling a torque altering mechanism to the output shaft and the wellbore tubular; rotating the output shaft at a first torque; and activating the torque altering mechanism to rotate the wellbore tubular at a second torque.


In one or more of the embodiments disclosed herein, the first speed is higher than the second speed.


In one or more of the embodiments disclosed herein, the first speed is lower than the second speed.


In one or more of the embodiments disclosed herein, rotating the tubular connects the tubular to another tubular.


In one or more of the embodiments disclosed herein, the torque altering mechanism comprises a gear arrangement.


In one or more of the embodiments disclosed herein, the torque supplying mechanism comprises a top drive.


In one or more of the embodiments disclosed herein, the torque altering mechanism is coupled to the wellbore tubular using a gripping mechanism.


In one or more of the embodiments disclosed herein, the gripping mechanism is one of a gripping head or an internal gripping mechanism.


In one or more of the embodiments disclosed herein, the wellbore tubular is connected to an output shaft of the torque altering mechanism.


In one or more of the embodiments disclosed herein, the first torque is higher than the second torque.


In one or more of the embodiments disclosed herein, the first torque is lower than the second torque.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of manipulating a tubular, comprising: providing a top drive assembly comprising a top drive having an output shaft operatively connected to a torque altering mechanism having a motor;applying a first torque to the tubular using the top drive to rotate the tubular;engaging the output shaft with the torque altering mechanism in both an activated and deactivated state while the tubular is being rotated by the top drive; andselectively adding a second torque to the tubular using the torque altering mechanism simultaneously with the first torque provided by the top drive, wherein the second torque is provided independent of the first torque.
  • 2. The method of claim 1, further comprising grippingly engaging the tubular and transmitting the first and second torque to the tubular using a gripping mechanism.
  • 3. The method of claim 2, wherein the gripping mechanism grippingly engages an outer surface of the tubular.
  • 4. The method of claim 2, wherein the gripping mechanism grippingly engages an inner surface of the tubular.
  • 5. The method of claim 1, wherein the tubular is casing.
  • 6. The method of claim 5, further comprising forming a wellbore with the casing using the first torque and selectively using the second torque.
  • 7. The method of claim 6, further comprising circulating a fluid through the top drive assembly and the casing.
  • 8. The method of claim 1, further comprising rotating the tubular with respect to another tubular using the first torque and selectively using the second torque.
  • 9. The method of claim 1, further comprising rotating the tubular and then selectively adding the second torque to the tubular while the tubular is rotating.
  • 10. A method of selectively providing rotational force to a tubular, comprising: providing a top drive having an output shaft coupled to the tubular;coupling a torque altering mechanism to the output shaft;rotating the output shaft at a first speed using the top drive;rotating the output shaft at least one revolution using the torque altering mechanism, wherein the torque altering mechanism is operable to rotate the output shaft at a second speed independent of the first speed;wherein the top drive and the torque altering mechanism are simultaneously operated to rotate the wellbore tubular at a third speed; anddeactivating the torque altering mechanism so that it does not rotate the tubular but remains engaged with the output shaft while the tubular is being rotated by the top drive.
  • 11. The method of claim 10, wherein the first speed is higher than the second speed.
  • 12. The method of claim 10, wherein the first speed is lower than the second speed.
  • 13. The method of claim 10, wherein rotating the tubular connects the tubular to another tubular.
  • 14. The method of claim 10, wherein the torque altering mechanism comprises a gear arrangement.
  • 15. The method of claim 10, wherein the output shaft is coupled to the tubular using a gripping mechanism.
  • 16. The method of claim 15, wherein the gripping mechanism is one of a gripping head or an internal gripping mechanism.
  • 17. The method of claim 10, wherein the output shaft and the tubular rotate in the same direction.
  • 18. The method of claim 10, wherein the torque altering mechanism comprises a motor for providing the second speed.
  • 19. A method of selectively providing rotational force to a tubular, comprising: providing a top drive having an output shaft coupled to the tubular;providing a torque altering mechanism that is continuously engaged with the output shaft while activated and deactivated;rotating the output shaft at a first torque using the top drive, wherein the torque altering mechanism is operable to rotate the output shaft at a second torque independent of the first torque; andsimultaneously operating the top drive and the torque altering mechanism to rotate the tubular at a third torque.
  • 20. The method of claim 19, wherein the output shaft and the tubular rotate in the same direction.
  • 21. The method of claim 19, wherein the torque altering mechanism comprises a motor for providing the second torque.
  • 22. A method of selectively providing rotational force to a tubular, comprising: providing a top drive having an output shaft coupled to the tubular;coupling a torque altering mechanism to the output shaft;applying a torque to the output shaft using the top drive to rotate the tubular at a first speed;activating the torque altering mechanism to change the torque applied to the output shaft while the tubular is rotating at the first speed, thereby causing the tubular to rotate at a second speed, wherein the torque altering mechanism is activated independent of the top drive; anddeactivating the torque altering mechanism while maintaining engagement with the output shaft being rotated by the top drive.
  • 23. The method of claim 22, wherein the torque altering mechanism comprises a motor for providing torque.
  • 24. A top drive assembly, comprising: a top drive having an output shaft for providing a first torque to a tubular; anda torque boosting source for providing a second torque to the tubular independent from the first torque provided by the top drive, wherein the torque boosting source is operatively connected to the output shaft such that the torque boosting source and the top drive are jointly capable of providing a third torque to the tubular, and wherein the torque boosting source is engaged with the output shaft in activated and deactivated states while the tubular is in a continuous rotative state.
  • 25. The assembly of claim 24, wherein the third torque comprises the first torque plus the second torque.
  • 26. The assembly of claim 24, wherein the torque boosting source is selectively activated to provide the second torque.
  • 27. The assembly of claim 24, wherein the toque boosting source is offset from a longitudinal axis of the tubular.
  • 28. The assembly of claim 24, wherein the toque boosting source is offset from a longitudinal axis of the top drive.
  • 29. The assembly of claim 24, wherein the torque boosting source comprises a motor for providing the second torque.
  • 30. The assembly of claim 24, wherein the output shaft has a gear surrounding the output shaft.
  • 31. The assembly of claim 30, wherein the torque boosting source includes a first gear that is meshed with the gear surrounding the output shaft when activated and deactivated.
  • 32. The assembly of claim 31, wherein the torque boosting source includes a motor operatively coupled to the first gear for rotating the first gear, thereby providing the second torque.
  • 33. The assembly of claim 32, wherein the motor is at least one of electrically, mechanically, and hydraulically powered.
  • 34. A method of selectively providing rotational force to a tubular, comprising: providing a top drive having an output shaft for rotating the tubular;engaging a torque boosting source to the output shaft while the torque boosting source is in a deactivated state;transmitting a first torque from the output shaft to rotate the tubular;selectively activating the torque boosting source to apply a second torque to the tubular, wherein the second torque is provided independent of the first torque provided by the top drive, thereby rotating the tubular at a combination of the first torque and the second torque.
  • 35. The method of claim 34, wherein engaging the output shaft comprises engaging a gear arrangement of the torque boosting source to the output shaft.
  • 36. The method of claim 35, wherein the torque boosting source comprises a motor for providing the second torque.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of co-pending U.S. Provisional Patent Application Ser. No. 60/644,661, filed on Jan. 18, 2005, which application is herein incorporated by reference in its entirety.

US Referenced Citations (308)
Number Name Date Kind
179973 Thornton Jul 1876 A
1414207 Reed Apr 1922 A
1418766 Wilson Aug 1922 A
1585069 Youle May 1926 A
1728136 Power Sep 1929 A
1777592 Thomas Oct 1930 A
1805007 Pedley May 1931 A
1825026 Thomas Sep 1931 A
1842638 Wigle Jan 1932 A
1917135 Littell Jul 1933 A
2105885 Hinderliter Jan 1938 A
2128430 Pryor Aug 1938 A
2167338 Murcell Jul 1939 A
2184681 Osmun et al. Dec 1939 A
2214429 Miller Sep 1940 A
2414719 Cloud Jan 1947 A
2522444 Grable Sep 1950 A
2536458 Munsinger Jan 1951 A
2570080 Stone Oct 1951 A
2582987 Hagenbook Jan 1952 A
2595902 Stone May 1952 A
2610690 Beatty Sep 1952 A
2641444 Moon Jun 1953 A
2668689 Cormany Feb 1954 A
2692059 Bolling, Jr. Oct 1954 A
2953406 Young Sep 1960 A
2965177 Bus, Sr., et al. Dec 1960 A
3041901 Knights Jul 1962 A
3087546 Wooley Apr 1963 A
3122811 Gilreath Mar 1964 A
3191683 Alexander Jun 1965 A
3193116 Kenneday et al. Jul 1965 A
3266582 Homanick Aug 1966 A
3305021 Lebourg Feb 1967 A
3321018 McGill May 1967 A
3380528 Timmons Apr 1968 A
3392609 Bartos Jul 1968 A
3477527 Koot Nov 1969 A
3489220 Kinley Jan 1970 A
3518903 Ham et al. Jul 1970 A
3548936 Kilgore et al. Dec 1970 A
3552507 Brown Jan 1971 A
3552508 Brown Jan 1971 A
3552509 Brown Jan 1971 A
3552510 Brown Jan 1971 A
3566505 Martin Mar 1971 A
3570598 Johnson Mar 1971 A
3602302 Kluth Aug 1971 A
3606664 Weiner Sep 1971 A
3635105 Dickmann et al. Jan 1972 A
3638989 Sandquist Feb 1972 A
3662842 Bromell May 1972 A
3680412 Mayer et al. Aug 1972 A
3691825 Dyer Sep 1972 A
3697113 Palauro et al. Oct 1972 A
3700048 Desmoulins Oct 1972 A
3706347 Brown Dec 1972 A
3746330 Taciuk Jul 1973 A
3747675 Brown Jul 1973 A
3766991 Brown Oct 1973 A
3776320 Brown Dec 1973 A
3780883 Brown Dec 1973 A
3808916 Porter et al. May 1974 A
3838613 Wilms Oct 1974 A
3840128 Swoboda, Jr. et al. Oct 1974 A
3848684 West Nov 1974 A
3857450 Guier Dec 1974 A
3871618 Funk Mar 1975 A
3881375 Kelly May 1975 A
3885679 Swoboda, Jr. et al. May 1975 A
3901331 Djurovic Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3961399 Boyadjieff Jun 1976 A
3964552 Slator Jun 1976 A
3980143 Swartz et al. Sep 1976 A
4054332 Bryan, Jr. Oct 1977 A
4077525 Callegari et al. Mar 1978 A
4100968 Delano Jul 1978 A
4127927 Hauk et al. Dec 1978 A
4142739 Billingsley Mar 1979 A
4202225 Sheldon et al. May 1980 A
4221269 Hudson Sep 1980 A
4257442 Claycomb Mar 1981 A
4262693 Giebeler Apr 1981 A
4274777 Scaggs Jun 1981 A
4274778 Putnam et al. Jun 1981 A
4280380 Eshghy Jul 1981 A
4315553 Stallings Feb 1982 A
4320915 Abbott et al. Mar 1982 A
4401000 Kinzbach Aug 1983 A
4437363 Haynes Mar 1984 A
4440220 McArthur Apr 1984 A
4446745 Stone et al. May 1984 A
4449596 Boyadjieff May 1984 A
4472002 Beney et al. Sep 1984 A
4489794 Boyadjieff Dec 1984 A
4492134 Reinholdt et al. Jan 1985 A
4494424 Bates Jan 1985 A
4515045 Gnatchenko et al. May 1985 A
4529045 Boyadjieff et al. Jul 1985 A
4570706 Pugnet Feb 1986 A
4592125 Skene Jun 1986 A
4593584 Neves Jun 1986 A
4593773 Skeie Jun 1986 A
4604724 Shaginian et al. Aug 1986 A
4604818 Inoue Aug 1986 A
4605077 Boyadjieff Aug 1986 A
4613161 Brisco Sep 1986 A
4625796 Boyadjieff Dec 1986 A
4646827 Cobb Mar 1987 A
4649777 Buck Mar 1987 A
4652195 McArthur Mar 1987 A
4667752 Berry et al. May 1987 A
4676312 Mosing et al. Jun 1987 A
4681158 Pennison Jul 1987 A
4681162 Boyd Jul 1987 A
4683962 True Aug 1987 A
4686873 Lang et al. Aug 1987 A
4709599 Buck Dec 1987 A
4709766 Boyadjieff Dec 1987 A
4725179 Woolslayer et al. Feb 1988 A
4735270 Fenyvesi Apr 1988 A
4738145 Vincent et al. Apr 1988 A
4742876 Barthelemy et al. May 1988 A
4759239 Hamilton et al. Jul 1988 A
4762187 Haney Aug 1988 A
4765401 Boyadjieff Aug 1988 A
4765416 Bjerking et al. Aug 1988 A
4773689 Wolters Sep 1988 A
4781359 Matus Nov 1988 A
4791997 Krasnov Dec 1988 A
4793422 Krasnov Dec 1988 A
4800968 Shaw et al. Jan 1989 A
4813493 Shaw et al. Mar 1989 A
4813495 Leach Mar 1989 A
4815546 Haney et al. Mar 1989 A
4821814 Willis et al. Apr 1989 A
4832552 Skelly May 1989 A
4836064 Slator Jun 1989 A
4843945 Dinsdale Jul 1989 A
4867236 Haney et al. Sep 1989 A
4875530 Frink et al. Oct 1989 A
4878546 Shaw et al. Nov 1989 A
4899816 Mine Feb 1990 A
4909741 Schasteen et al. Mar 1990 A
4921386 McArthur May 1990 A
4936382 Thomas Jun 1990 A
4962579 Moyer et al. Oct 1990 A
4962819 Bailey et al. Oct 1990 A
4971146 Terrell Nov 1990 A
4997042 Jordan et al. Mar 1991 A
5022472 Bailey et al. Jun 1991 A
5036927 Willis Aug 1991 A
5049020 McArthur Sep 1991 A
5060542 Hauk Oct 1991 A
5062756 McArthur et al. Nov 1991 A
5107940 Berry Apr 1992 A
5111893 Kvello-Aune May 1992 A
RE34063 Vincent et al. Sep 1992 E
5191939 Stokley Mar 1993 A
5207128 Albright May 1993 A
5233742 Gray et al. Aug 1993 A
5245265 Clay Sep 1993 A
5251709 Richardson Oct 1993 A
5255751 Stogner Oct 1993 A
5272925 Henneuse et al. Dec 1993 A
5282653 LaFleur et al. Feb 1994 A
5284210 Helms et al. Feb 1994 A
5294228 Willis et al. Mar 1994 A
5297833 Willis et al. Mar 1994 A
5305839 Kalsi et al. Apr 1994 A
5332043 Ferguson Jul 1994 A
5340182 Busink et al. Aug 1994 A
5351767 Stogner et al. Oct 1994 A
5354150 Canales Oct 1994 A
5368113 Schulze-Beckinghausen Nov 1994 A
5386746 Hauk Feb 1995 A
5388651 Berry Feb 1995 A
5433279 Tessari et al. Jul 1995 A
5461905 Penisson Oct 1995 A
5497840 Hudson Mar 1996 A
5501280 Brisco Mar 1996 A
5501286 Berry Mar 1996 A
5503234 Clanton Apr 1996 A
5535824 Hudson Jul 1996 A
5575344 Wireman Nov 1996 A
5577566 Albright et al. Nov 1996 A
5584343 Coone Dec 1996 A
5588916 Moore Dec 1996 A
5645131 Trevisani Jul 1997 A
5661888 Hanslik Sep 1997 A
5667026 Lorenz et al. Sep 1997 A
5706894 Hawkins, III Jan 1998 A
5711382 Hansen et al. Jan 1998 A
5735348 Hawkins, III Apr 1998 A
5735351 Helms Apr 1998 A
5746276 Stuart May 1998 A
5765638 Taylor Jun 1998 A
5772514 Moore Jun 1998 A
5785132 Richardson et al. Jul 1998 A
5791410 Castille et al. Aug 1998 A
5803191 Mackintosh Sep 1998 A
5806589 Lang Sep 1998 A
5833002 Holcombe Nov 1998 A
5836395 Budde Nov 1998 A
5839330 Stokka Nov 1998 A
5842530 Smith et al. Dec 1998 A
5850877 Albright et al. Dec 1998 A
5890549 Sprehe Apr 1999 A
5909768 Castille et al. Jun 1999 A
5931231 Mock Aug 1999 A
5960881 Allamon et al. Oct 1999 A
5971079 Mullins Oct 1999 A
5971086 Bee et al. Oct 1999 A
6000472 Albright et al. Dec 1999 A
6012529 Mikolajczyk et al. Jan 2000 A
6056060 Abrahamsen et al. May 2000 A
6065550 Gardes May 2000 A
6070500 Dlask et al. Jun 2000 A
6079509 Bee et al. Jun 2000 A
6119772 Pruet Sep 2000 A
6142545 Penman et al. Nov 2000 A
6161617 Gjedebo Dec 2000 A
6170573 Brunet et al. Jan 2001 B1
6173777 Mullins Jan 2001 B1
6199641 Downie et al. Mar 2001 B1
6202784 Ables et al. Mar 2001 B1
6217258 Yamamoto et al. Apr 2001 B1
6227587 Terral May 2001 B1
6237684 Bouligny, Jr. et al. May 2001 B1
6278450 Seneviratne Aug 2001 B1
6279654 Mosing et al. Aug 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315051 Ayling Nov 2001 B1
6334376 Torres Jan 2002 B1
6349764 Adams et al. Feb 2002 B1
6360633 Pietras Mar 2002 B2
6378630 Ritorto et al. Apr 2002 B1
6390190 Mullins May 2002 B2
6412554 Allen et al. Jul 2002 B1
6415862 Mullins Jul 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6527047 Pietras Mar 2003 B1
6527493 Kamphorst et al. Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6553825 Boyd Apr 2003 B1
6591471 Hollingsworth et al. Jul 2003 B1
6595288 Mosing et al. Jul 2003 B2
6622796 Pietras Sep 2003 B1
6637526 Juhasz et al. Oct 2003 B2
6651737 Bouligny Nov 2003 B2
6668684 Allen et al. Dec 2003 B2
6668937 Murray Dec 2003 B1
6679333 York et al. Jan 2004 B2
6688394 Ayling Feb 2004 B1
6688398 Pietras Feb 2004 B2
6691801 Juhasz et al. Feb 2004 B2
6725938 Pietras Apr 2004 B1
6725949 Seneviratne Apr 2004 B2
6732822 Slack et al. May 2004 B2
6742584 Appleton Jun 2004 B1
6742596 Haugen Jun 2004 B2
6832656 Fournier, Jr. et al. Dec 2004 B2
6832658 Keast Dec 2004 B2
6840322 Haynes Jan 2005 B2
6892835 Shahin et al. May 2005 B2
6907934 Kauffman et al. Jun 2005 B2
6938697 Haugen Sep 2005 B2
6976298 Pietras Dec 2005 B1
7004259 Pietras Feb 2006 B2
7028586 Robichaux Apr 2006 B2
7073598 Haugen Jul 2006 B2
7090021 Pietras Aug 2006 B2
7096977 Juhasz et al. Aug 2006 B2
7100698 Kracik et al. Sep 2006 B2
7107875 Haugen et al. Sep 2006 B2
7117938 Hamilton et al. Oct 2006 B2
7140445 Shahin et al. Nov 2006 B2
7188686 Folk et al. Mar 2007 B2
7213656 Pietras May 2007 B2
7325610 Giroux et al. Feb 2008 B2
20010042625 Appleton Nov 2001 A1
20020029878 Victor Mar 2002 A1
20020108748 Keyes Aug 2002 A1
20020170720 Haugen Nov 2002 A1
20030155159 Slack et al. Aug 2003 A1
20030164276 Snider et al. Sep 2003 A1
20030173073 Snider et al. Sep 2003 A1
20030221519 Haugen Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040069500 Haugen Apr 2004 A1
20040144547 Koithan et al. Jul 2004 A1
20040173358 Haugen Sep 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20040251050 Shahin et al. Dec 2004 A1
20040251055 Shahin et al. Dec 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050051343 Pietras et al. Mar 2005 A1
20050096846 Koithan et al. May 2005 A1
20050098352 Beierbach et al. May 2005 A1
20060000600 Pietras Jan 2006 A1
20060124353 Juhasz et al. Jun 2006 A1
20060180315 Shahin et al. Aug 2006 A1
20070000668 Christensen Jan 2007 A1
20080093127 Angman Apr 2008 A1
Foreign Referenced Citations (48)
Number Date Country
2 307 386 Nov 2000 CA
3 523 221 Feb 1987 DE
0 087 373 Aug 1983 EP
0 162 000 Nov 1985 EP
0 171 144 Feb 1986 EP
0 285 386 Oct 1988 EP
0 474 481 Mar 1992 EP
0 479 583 Apr 1992 EP
0 525 247 Feb 1993 EP
0 589 823 Mar 1994 EP
1148206 Oct 2001 EP
1 256 691 Nov 2002 EP
1 469 661 Apr 1977 GB
2 053 088 Feb 1981 GB
2 201 912 Sep 1988 GB
2 223 253 Apr 1990 GB
2 224 481 Sep 1990 GB
2 240 799 Aug 1991 GB
2 275 486 Apr 1993 GB
2 345 074 Jun 2000 GB
2 357 530 Jun 2001 GB
2001-173349 Jun 2001 JP
WO 90-06418 Jun 1990 WO
WO 92-18743 Oct 1992 WO
WO 93-07358 Apr 1993 WO
WO 95-10686 Apr 1995 WO
WO 96-18799 Jun 1996 WO
WO 97-08418 Mar 1997 WO
WO 98-05844 Feb 1998 WO
WO 98-11322 Mar 1998 WO
WO 98-32948 Jul 1998 WO
WO 99-11902 Mar 1999 WO
WO 953-41485 Aug 1999 WO
WO 99-58810 Nov 1999 WO
WO 00-08293 Feb 2000 WO
WO 00-09853 Feb 2000 WO
WO 00-11309 Mar 2000 WO
WO 00-11310 Mar 2000 WO
WO 00-11311 Mar 2000 WO
WO 00-39429 Jul 2000 WO
WO 00-39430 Jul 2000 WO
WO 00-50730 Aug 2000 WO
WO 01-12946 Feb 2001 WO
WO 0133033 May 2001 WO
WO 01-94738 Dec 2001 WO
WO 2004-022903 Mar 2004 WO
WO 2005090740 Sep 2005 WO
WO 2006047892 May 2006 WO
Related Publications (1)
Number Date Country
20060180315 A1 Aug 2006 US
Provisional Applications (1)
Number Date Country
60644661 Jan 2005 US