The present invention relates to flat panel displays.
A new emissive type flat panel display technology called organic light emitting diode (OLED) is in the process of development by many companies around the world such as Sharp, Toshiba, Samsung, and many more. The primary technical problems with the commercialization of the OLED display are manufacturing uniformity and differential color aging over the lifetime of the display. These problems have been addressed by several provisional and formal patent applications assigned to the Nuelight Corporation. Refer to U.S. patent application Ser. No. 10/872,344 entitled Method and Apparatus for Controlling an Active Matrix Display and U.S. patent application Ser. No. 10/872,268 entitled Controlled Passive Display Apparatus and Method for Controlling and making a passive display. These patent applications show how to use an emission feedback system to solve the problems of OLED uniformity and differential aging in analog driven display systems.
In previous patent applications filed by Nuelight Corporation, the type of emission system for the active matrix flat panel is termed by the industry as a down emitter. In the down emitter display, the active matrix and sensor circuitry is first deposited and patterned on a transparent (glass or plastic) substrate. On top of the active matrix circuit the OLED or emissive structure is deposited. The opaque cathode of the OLED is the last layer to be deposited; therefore, light emitted by the OLED could not pass through the cathode to a viewer. This meant that the light reflected off the inside surface of the cathode and exited down through the transparent substrate.
Because the active matrix circuitry is sensitive to the emitted light, it has to be shielded from the light emitted by the OLED. As a result, the OLED material has to be restricted to clear areas of the pixel not occupied by active matrix circuitry. This causes the emissive area of the pixel to be only a fraction of the pixel area. If only a fraction of the pixel area emits light, then the brightness of the OLED must be increased to make up for the area of the pixel that does not emit light. The area of the pixel that is emissive is called the pixel's aperture. In many OLED down emitter flat panel displays, the active matrix circuitry takes up as much as 80 percent of the pixel area. Therefore, the OLED material must emit light at lease five times brighter than for which the pixel is designed.
Recent display developments have introduced the up emitter emissive display. These displays are able to use as much as 80 to 90 percent of the pixel's area, because the active matrix circuitry can be tucked underneath the emitting OLED material. In order to produce an up emitter, either a transparent cathode must be used or the opaque cathode must be placed under the emitting portion of the OLED. This disclosure shows how to use both a transparent cathode as a top layer or an opaque layer under the OLED emitter.
The present invention discloses novel top emitter pixel circuitry for flat panel displays. Sensor material is deposited above a substrate. A pixilated opaque cathode is deposited above the sensor material. Organic light emitting diode material is deposited above the cathode. A transparent anode is deposited above the OLED material. Some of the layers have dielectric layers between them. The light emitted by the OLED material passes upwards through the transparent anode but cannot pass downwards through the opaque cathode. A deep via optically connects the OLED material layer with the sensor material layer. A transparent cathode can be used instead of the opaque cathode, thereby allowing the light generated by the OLED material layer to pass both upward through the transparent anode and downward through the transparent cathode. That would eliminate the need for a deep via to form an optical path between the OLED material layer and the sensor layer. However, that would require the addition of a shield to shield the active matrix circuitry from the light generated by the OLED material layer.
The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The present invention covers top emitter pixel circuitry and methods for fabricating same. The top emitter pixel circuitry of the present invention can also be referred to as the up emitter pixel circuitry. The active matrix circuitry included in the top emitter pixel circuitry of the present invention is located under the OLED emitter that has either a pixilated cathode (negative electrode) structure with a transparent anode layer (positive electrode) for the emitting surface, or has a transparent cathode as the emitting surface. In one embodiment, the cathode is opaque and pixilated. In that embodiment, a deep via is used to align the edge of the OLED emitter with the edge of the sensor.
In another embodiment, both electrodes (anode and cathode) are transparent and thus interchangeable. In that embodiment, the metal gate of the thin film transistor (TFT) of the active matrix is a top gate that is situated between the emitting OLED and the TFT channel, to shield the TFT channel from the light emitted by the OLED. The sensor does not have shielding and is exposed directly to the OLED emission. Also, there is no sensor bias electrode in this embodiment to manage the conductivity of the sensor.
In another embodiment, the metal gate is a bottom gate. A portion of the bottom gate material on the same layer is also used as a bias electrode for the sensor. The bias electrode is thus situated below the sensor and therefore does not reduce the light emission of the OLED that strikes the sensor. An opaque Faraday shield is employed between the bottom electrode of the OLED (cathode) and the channel of the TFT so that the voltage on the OLED does not influence the channel of the TFT. An opening in the Faraday shield over the sensor allows scattered light from the OLED emission to strike the sensor.
In another embodiment, the basic structure used in the first embodiment above is used but the opening in the opaque cathode is not aligned with the sensor by using a deep via, and scattering in the adjacent transparent dielectric layers is relied upon to deliver OLED light emission to the sensor located under a dark bias electrode. In another embodiment, the same structure as the first embodiment above is used except the sensor does not have a bias electrode. In another embodiment, the semiconductor material used for the sensor is replaced with a reverse biased OLED, and the sensor is isolated from the emission OLED.
There are many other embodiments of this invention that involve the full range of OLED materials from the Kodak small molecule material to the polymer OLEDs and phosphorescent OLEDs. The active matrix may use any type of semiconductor material including amorphous silicon, poly silicon, or monolithic silicon, or cadmium selenide to name a few.
In order to produce the devices of the present invention, various techniques well known in the semiconductor industry are used including: material deposition processes including but not limited to evaporation; sputtering and plasma enhanced chemical vapor deposition; etching processes including but not limited to wet chemical etching; reactive ion etching and sputter etching; and photolithographic processes.
Referring to
The area of the OLED emitter layer 12 with the crosses 14 is where light is produced and no light is produced in the clear areas 16 because the black cathode layer 18 under the emitting layer 12 is interrupted to allow the passage of light to the sensor. The layer directly under the black cathode layer 18 is a clear layer of a dielectric 20 that can be any dielectric including but not limited to silicon dioxide, silicon nitride, or any other dielectric or combination of dielectrics. Under the clear dielectric layer 20 is the black biased dark shield or electrode 22. The purpose of the bias electrode 22 is to modify the conductivity of the sensor layer 26 to fine tune the sensor circuit. Under the bias electrode 22 is another dielectric layer 24 to insulate the sensor 26 from the bias electrode 22.
According to
In Step 1, the substrate 30, which can be glass, plastic, metal or any other material that can hold the proper dimensions through the semiconductor process and stand up to the temperature and processes may be used, has a sealing and protection layer 28 deposited by any suitable deposition process used in the semiconductor industry. This layer 28 is unstructured and requires no masking step.
In Step 2, the active semiconductor layer 26 is deposited using a suitable deposition process including sputtering and plasma enhanced chemical vapor deposition (PECVD). The gas make-up and concentrations of hydrogen, helium and silane are typically provided in the literature for this process. This layer is structured using mask M1 into TFT channel elements and the sensor element with photolithographic processes well known in the industry. One type of process is known as the back channel etch (BCE) process, which starts with a two layer deposition of the normal TFT channel semiconductor followed by a highly phosphorus doped layer (n+ layer) which forms the interface material between the source/drain contact metal and the channel semiconductor material.
In Step 3, the source/drain (S/D) and sensor contact metal is deposited using well known processes in the industry.
In Step 4, the Gate dielectric material 24 is deposited followed by the Gate metal and sensor bias electrode 22, which is structured using mask M3. In Step 5, the third dielectric 20 is deposited in similar fashion to the first two dielectrics 24 and 28. Also in Step 5, using mask M4, the vias 32 are cut in the dielectric 20, 24 and 28 to provide inter layer contacts and to lower the emission edge of the OLED material 14 to line up with the edge of the sensor element 26.
In Step 6, the cathode electrode 18 is deposited and structured to produce a pixilated cathode so that individual pixels can be addressed and controlled as is well known in the industry. In Step 7, the OLED material layer 12 including the ETL, recombination layer, HTL and the top transparent electrode 10 are deposited.
Referring to
This means that steps must be taken to isolate the sensor data caused by the OLED emission from data caused by the ambient light. One way to do this is to take a dark frame data reading, which will give sensor data for the ambient light exposure with no OLED emission present. Then when the OLED emission data is taken the data contributed by the ambient light is subtracted out. This is a well known technique used in the astronomy industry for deep space photography.
Referring to
Therefore, to protect the TFT channel 34 from OLED light emission and the OLED electric field, an opaque metallic layer is deposited called a Faraday shield 42. The Faraday shield 42 has an opening cut into it to allow OLED light emission to pass through to the sensor 36 below. The same data isolation techniques employed in the embodiment of
Referring to
In the above embodiments, the sensor 26 was constructed of the same semiconductor material as were the TFT channels 34. In this embodiment of the pixel circuitry 60 shown in
The reverse current (leakage) in the reverse biased OLED is increased when light enters the space charge region of the diode. The larger the space charge region the more light in converted to reverse current. This fact can be used to advantage in making an optical sensor in the pixel. The requirement is that one electrode of the sensor diode be isolated from the emission diode.
The present application claims priority to U.S. Provisional Patent Application No. 60/645,521, filed on Jan. 18th, 2005.
Number | Date | Country | |
---|---|---|---|
60645521 | Jan 2005 | US |