In a first aspect, this invention relates to a rock-drilling tool intended for top hammer drilling and of the type that comprises a drill rod having a male thread and a coupling sleeve having a female thread for the co-operation with the male thread of the drill rod.
In other aspects, the invention also relates to a drill rod as well as a coupling sleeve for such rock-drilling tools.
Many types of equipments for practical rock drilling comprise, on one hand, a stationary placed machine having a shank adaptor, and on the other hand a drilling tool in the form of a bit and at least one drill rod as well as a coupling sleeve for the connection of the drill rod with the shank adaptor. Furthermore, the drill rod connected to the shank adaptor may be connected with one or more additional rods while forming a longer drill string for drilling deeper holes. In top hammer drilling, the shank adaptor is arranged to provide a combination of impact and rotary motions, which are transferred to the bit via the drill rod or the string.
In rock-drilling equipment in general and equipment for top hammer drilling in particular, high requirements of technical as well as economic character are made. In a technical respect, the drilling tool should be capable of drilling the straightest possible holes fast and efficiently in rocks of most varying nature. Of economical interest to the user is not only the technical performance of the newly manufactured drilling tool, but to a great extent also the service life thereof. This depends on a number of different factors, one of which is the capacity of the drill to resist corrosion fatigue. Such fatigue, which may result in rupture of the drill rod, arises when the same, during the work thereof of transferring the impact and rotary motions to the bit, is subjected to corrosive attacks, which in combination with pulsating loads in the form of shock waves and bending motions, initiate cracks, which gradually grow large finally resulting in fatigue. Particularly sensitive to crack formation are the thread-groove bottoms in the male thread of the drill rod, where the drill rod has a small cross-area. Another service life-determining factor is the inevitable wear of the threads that arises when the flanks thereof wear against each other as a result of the intermittently repetitive, axial impulsive forces, as well as the relative rotary motion that constantly is active when the torque is transferred between the coupling sleeve and the drill rod. Thus, in contrast to rigidly tightened threaded joints of the conventional type, the severely exposed threaded joint of a rock drill is dependent on the fact that the torque transfer between the coupling sleeve and the drill rod provides a “constant” screwing-in of the male thread into the female thread, which leads to wear of primarily the flanks of the threads that tighten the joint. The thread wear becomes particularly troublesome in economical respect if the male thread of the drill rod is worn out faster than the female thread of the coupling sleeve, since this requires replacement of the expensive drill rod before the requisite replacement of the cheaper coupling sleeve. An additional factor of importance to the service life of the drill as well as the technical performance thereof, is the capacity of the threaded joint to counteract deflection, i.e., the tendency of the drill rod to deflect or turn out at an angle to the coupling sleeve. Ideally, the drill rod and the coupling sleeve should extend along a common centre axis (in extension of the shank adaptor) in order to guarantee that the drilled hole becomes desirable straight. The further the wear of the threads proceeds, the more the stiffness is deteriorated and the play is increased in the joint between the coupling sleeve and the drill rod, the deflection phenomena propagating into the threaded joint and accelerating the wear.
The problem of premature wear of the male thread of the threaded joint between a drill rod and a coupling sleeve has been observed by U.S. Pat. No. 6,196,598 (SE 521790), more precisely by the fact that the male thread is designed with a wear volume (proportional to the cross-sectional area) that is from 5 to 25% larger than the wear volume of the female thread. In such a way, it is guaranteed that the comparatively expensive drill rod does not need to be discarded and be replaced before the cheaper female thread of the coupling sleeve has been worn out. However, this measure solves neither the problem of corrosion fatigue nor the problem of successively growing play and deflection.
The present invention aims at obviating the above-mentioned shortcomings of the known rock-drilling tool and at providing an improved tool. Therefore, a primary object of the invention is to provide a rock-drilling tool adapted for practical top hammer drilling, which has optimal properties in respect of technical performance as well as economic attractiveness, above all by being able to offer a long service life and a persistently reliable serviceability during the entire active service life thereof. Thus, the user should not only be able to count on the drill rod to last at least as long as the coupling sleeve, but also to efficiently and in the long term resist, on one hand, the tendencies to corrosion fatigue, and on the other hand the deflection phenomena that increase the thread play that inevitably arises during practical drilling in rocks of varying structure. An additional object is to provide a rock-drilling tool that is structurally simple and therefore inexpensive to manufacture and easy to use.
According to the invention, at least the primary object is attained by the rock-drilling tool according to the invention by means of the features defined in the characterizing clause of claim 1. Preferred embodiments of the rock-drilling tool are further defined in the dependent claims 2-5.
Furthermore, the invention relates to a drill rod and a coupling sleeve as such. The features of the drill rod according to the invention are seen in the independent claim 6, while the features of the coupling sleeve according to the invention are defined in the independent claim 9.
By U.S. Pat. No. 6,547,891, a drill rod intended for top hammer-drilling equipment having a male thread made of a corrosion resistant, martensitic steel is previously known. In this case, the publication does not contain—except for the specified material use—any information about how a drill rod could be optimized in respect of the capability of the male thread to provide a threaded joint free of play.
Threaded joints for rock-drilling tools of different types are further disclosed in SE 9904324-2, SE 0103407-3 and SE 0201989-1.
The invention will be described closer below, reference being made to the appended drawings. Because neither the adaptor to which one of the ends of the drill rod of the tool is connected, nor the bit connected to the opposite end of the drill rod, are of any immediate interest, these components, as the proper drilling machine, have not been shown in the drawings.
Therefore, in the drawings:
The drill rod, in its entirety designated 1, comprises opposite ends 2, 3, such as the same are represented by planar, annular end surfaces, and has a length that is many times greater than the diameter thereof. In practice, the rod 1 may have a length of 4-6 m and a largest diameter of about 38 mm. The end 2 is usually called shank end, since the same should always be facing the shank adaptor. In a main section S, which extends along the major part of the total length, the rod has a conventional, hexagonal cross-section shape (see
In this case, the coupling sleeve 7 is exteriorly cylindrical and comprises two hollow spaces 8, 9, which are separated by a partition wall 10, and mouth in opposite ends 11, 12 of the sleeve. The partition wall 10 has an axial thickness L5. Each individual hollow space 8, 9 is delimited by cylindrical wall portions or skirts 13, 14. On the insides of the same, female threads 15, 16 are formed, the first-mentioned one of which is intended to co-operate with the male thread 5 on the rod 1, while the last-mentioned one is intended to co-operate with a male thread on a spigot included in the shank adaptor (not shown) that has the purpose of driving the drilling tool. The two hollow spaces 8, 9 communicate with each other via a central hole 17, which extends through the partition wall 10.
When the male thread 5 of the rod and the female thread 15 of the sleeve co-operate during operation, the end surface 2 bottoms against the surface 18 of the partition wall 10. Analogously, the end (not shown) of the adaptor spigot bottoms against the opposite, planar surface 19 of the partition wall 10.
According to the invention, at least the male thread 5 on the drill rod 1 may be manufactured from a martensitic, stainless steel. If so, it is most convenient that the drill rod in its entirety is manufactured from this material, the two male threads 5, 6 being integrated parts of the rod body. The steel may advantageously be of the type disclosed in U.S. Pat. No. 6,547,891, i.e., have a structure comprising primarily martensite and containing at least 10% by weight of chromium (Cr), as well as minute quantities of carbon (C) and nitrogen (N), respectively. The steel may also contain varying quantities of molybdenum (Mo), tungsten carbide (WC), and copper (Cu). The content of martensite should amount to at least 50% by weight, suitably at least 75% by weight.
By making the drill rod of a corrosion resistant alloy, a passive surface layer is obtained as a consequence of the addition of chromium, which layer efficiently counteracts corrosion, above all in the bottoms of the thread grooves. Therefore, in comparison with conventional steels, the corrosion rate is reduced most considerably in the sensitive thread-groove bottoms. Hence, undertaken tests have indicated an increase of at least 50% of the service life (from about 2000 to about 3000 drilled metres).
The positive impact of the stainless material on the service life of the drill rod is consequently irrefutable. However, the desirable corrosion properties have been gained on the expense of the wear resistance of the material. Thus, the martensite steel of the rod has a hardness of about 50 HRC, while a conventional rod material in the form of hardened steel has a surface hardness within the range of 57-62 HRC.
Advantageously, the material of the sleeve 7 may be a hardened low-alloy steel, e.g., case-hardened or carburized steel, since the problems with corrosion fatigue in the sleeve are not as critical as the problems with such fatigue in the thread-groove bottoms of the drill rod.
Reference is now made to
In the same way as the male thread ridge 5A, the female thread ridge 15A is delimited by a crest 25 and two flanks 26, 27, between which a helix groove 28 having a bottom 29 is delimited. In the example, said groove bottom 29 is defined by a straight generatrix. The crest 25 of the female thread ridge has a width B2 that may be smaller than the width B1 of the crest surface 20. This means that the cross-sectional area of the female thread ridge 15A may be smaller than that of the male thread ridge, from which it follows that the wear volume of the male thread ridge may be larger than the wear volume of the female thread ridge. In the example, the wear volume of the female thread ridge 15A amounts to about 81.8% of the wear volume of the male thread ridge. In other words, the wear volume of the male thread ridge is about 22% larger than the wear volume of the female thread ridge. However, this proportion between the respective wear volumes may vary most considerably, above all depending on the choice of material of the rod and the coupling sleeve, respectively. More precisely, the greater the difference in wear resistance/surface hardness there is between the stainless steel of the male thread and the hardened steel of the coupling sleeve, proportionally the larger wear volume the male thread ridge 5A may have. Therefore, in practice, the male thread ridge may be given a wear volume that is more than 20 or 25%, e.g., 50-75%, larger than the wear volume of the female thread ridge.
In
The hexagon shown in
The axial lengths of the different bar sections are designated L1, L2, L3 and L4. In
In one practical embodiment, the male thread 5 has a length L1 of 75 mm and an outer diameter D1 of 38.7 mm, while the inner diameter D2 of the thread-groove bottom amounts to 34 mm. This means that the male thread ridge has a height of about 2.3 mm. The envelope surface 30 may have a length L2 of 17 mm and a diameter of 38.7 mm, i.e., the same diameter as the outer diameter D1 of the thread. However, the guide surface 31 has a diameter D3 that is larger than the diameter D1 and, in the practical example, amounts to 39.1 mm. In other words, the diameter difference between the guide surface 31 and the envelope surface 30 amounts to 0.4 mm. The axial extension L3 of the guide surface 31 may then be limited to 7 mm. In the example, the smallest diameter D4 of the waist 32 amounts to 32.9 mm. In other words, in this case the diameter D4 is about 1.1 mm smaller than the diameter D2 of the thread-groove bottom. The axial length L4 of the waist amounts to about 57 mm.
The coupling sleeve 7 (see
Between the guide surface 35 and the end surface 11 of the sleeve, a chamfer 36 is formed in order to facilitate the insertion of the drill rod into the sleeve.
When the male thread 5 of the drill rod is screwed ,into the female thread 15 of the sleeve into full engagement with the end surface 2 pressed against the wall surface 18, the guide surface 31 is located in the immediate vicinity of the chamfer 36. In other words, in this state the guide surface 31 is maximally axially spaced apart from the partition wall 10 of the coupling sleeve. This means that possible tendencies of the drill rod to deflect or turn inside the sleeve are efficiently counteracted by the co-operating guide surfaces 31, 35.
By the fact that the waist 32, which is arranged axially inside the male thread 5, has a reduced diameter, a flexibility or elastic compliance is obtained in comparison with the hexagonal main profile S as well as the different sections closer to the end of the rod, which are thicker than the waist. This means that the deflection tendencies of the drill rod, which inevitably arise during practical drilling, are absorbed by the elastic waist rather than propagating to the threaded joint between the drill rod and the sleeve.
A fundamental advantage of the drilling tool according to the invention, composed of the drill rod, the coupling sleeve and a bit (not shown), is that the same has optimised properties in respect of service life as well as technical performance. Thus, the combination of the flexible waist and the two co-operating guide surfaces between this and the threaded joint provides the effect that the deflection motions of the drill rod are absorbed in the waist, without propagating into the proper threaded joint. This means that the wear of the threaded joint is limited to the wear, inevitable per se, that arises as a consequence of the transfer by the shank adaptor of impact and rotary motion, but which does not grow worse or get accelerated by the deflection phenomena. According to another aspect of the invention, the use of the martensitic, stainless steel in the male thread of the drill rod counteracts corrosion fatigue therein to a far-reaching extent. Simultaneously, it is guaranteed that the expensive drill rod obtains at least as long service life as the cheaper coupling sleeve.
Even if the invention above has been described in connection with a rock-drilling tool that is intended for drifter drilling and comprises only one drill rod and one coupling sleeve, the same is also applicable to rock-drilling tools having two or more rods and coupling sleeves, respectively.
The disclosures in Swedish patent application Nos. 0601117-5 and 0601119-1, from which this application claims priority are incorporated herein by reference.
The invention is in no way limited to the above-described embodiments but can be freely varied within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0601117-5 | May 2006 | SE | national |
0601119-1 | May 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2007/000467 | 5/15/2007 | WO | 00 | 3/25/2009 |