This application claims the benefit of convention priority based on Canadian Application No. 2,590,562, filed May 28, 2007, entitled Top Mounted Injector For Coiled Tubing Injection, the disclosures of which are incorporated herein in the entireties.
This invention relates to a mounting arrangement for use with a coiled tubing injector of the type for inserting and withdrawing coiled tubing in a well.
A wide variety of coiled tubing injectors and the manner in which they are mounted over a well being serviced have been developed in the last couple of decades as have been the designs of the gripper driving system which engages the tubing and pushes it into the well and withdraws it therefrom. The gripper driven system has been commonly mounted within a framework which normally also carries thereon a gooseneck providing the guide for feeding the tubing from and returning it to a storage reel. Various methods are utilized in mounting the injector above a well head, and more recently it has been common practice for the framework of the injector component to be associated with a mast which is raised to an injector operating position above the well.
The overall framework and injector combination has commonly included a heavy, lower base structure which may also provide a working platform. The forces which occur in the injector, and particularly those which developed in pushing the tubing into a bore hole and subsequently drawing it out, are transferred to the well head or mast framework through the base structure. There is commonly provided between the base and the structure to which the load is transferred from the injector component, a strain gauge which provides information as to the load the injector is being subjected by its insertion into and withdrawal of the coiled tubing from the well.
The framework of the overall injector component in such known structures must include a heavy top frame portion above the gripper driving system for the mounting of the gooseneck which transfers a significant load from the effect of the tubing being pulled or pushed over the gooseneck which itself extends a considerable distance upwardly and laterally from the top frame portion of the framework of the injector component. The framework has had to include therefore an intermediate force transmitting frame components extending between the heavy base portion and the top portion which components are usually positioned about the actual grip and feed mechanism. These frame components which are spaced about the gripper drive and provide part of the framework are commonly referred to as a crash cage. This commonly used design accordingly adds considerable weight to the total injector component, which in turn adds to the cost of its production and its use in the field. Moreover, even while adding to the weight of the total structure, there are known instances of the crash cage deflecting under service load conditions, thus resulting in misalignment in the feeding of the coiled tubing to the extent of affecting its path of travel.
It is an object of the present invention to provide an injector mounting system which is of reduced weight and thus less costly to produce, transport and operate in the field.
It is a further object of the present invention to provide an injector mounting system in a top mounted fashion which is not only of a simpler design but is not subject to the same adverse operating conditions experienced by the commonly used form of injector structures now in use.
According to the present invention, there is provided an injector assembly of a type mountable in a support system, such as a mast, above a well head for use in inserting and withdrawing coiled tubing in relation to a well bore hole. The injector assembly includes an injector component containing drive means engageable with the tubing for forcing the tubing therethrough in upward or downward directions, and a mounting component engageable with the support system for holding the injector component in an operable position above the bore hole with the injector component suspended only by the mounting component. The mounting component includes carrier means engageable with the support system for transferring to the support system the forces transferred to the mounting component from the injector component during the injection and withdrawal of the tubing by the injector component.
In a preferred embodiment of the invention, there is provided an injector structure of the type mountable in a support structure above a well head for use in inserting and withdrawing operations of coiled tubing in relation to a well bore hole, and including a mounting component, a tubular injection component and a gooseneck component. The mounting component is adapted to be located in a working position on the support system, and the tubular injection component contains drive means engageable with the coiled tubing for forcing the tubing longitudinally in either direction in the well bore hole. The gooseneck component is adapted to receive the coiled tubing from a storage reel and direct the tubing from the storage reel to the drive means of the injection component during the inserting operation. Alternatively, the gooseneck component receives the tubing from the injector component and directs it to the storage reel during the withdrawal operation from the borehole. The injector component has a top portion providing upper connection means, and the gooseneck component has a mounting base providing lower connecting means. The mounting component has an upper surface area for engagement with the mounting base of the gooseneck component and includes attachment means interacting with the lower connection means of the gooseneck component so as to support the gooseneck thereabove. The mounting component further has an underside providing inter-locking means for engaging the upper connection means of the injection component for thereby suspending the injection component thereunder. Thus, the mounting component is disposed between the top portion of the injector component and the mounting base of the gooseneck component so that during operation of the injector all forces developed in the injection component and the gooseneck component are thereby transferred to the supporting structure through the intermediately located mounting component.
In the accompanying drawings which show an embodiment of invention by way of example:
In the drawings, reference number 10 generally denotes the overall coiled tubing injector system of the present invention and wherein the overall injector system 10 consists in operation of three major components, including an injector component 11, a gooseneck component 12, and a mounting component 13.
The basic working components of the injector component 11 may be of known designs which include two sets of continuous linked drive chains (not shown) having opposed flights on opposite sides of the passage of the coiled tubing to be driven into and out of a bore hole. These drive chains normally carry gripping members for engaging the tubing and driving the tubing as the drive chains are circulated. Each set of drive chains is driven by a pair of upper drive sprockets 14, 14, as best seen in
A significant novel aspect of the injector component of the present invention is that its overall framework 17 may be formed of a much lighter construction than in known designs, and the reason for this being possible will become hereinafter. Further features of the injector component 11, particularly with its mounting arrangement will also be described in more detail below.
With reference to the gooseneck component 12, which is shown in
The overall injector system 10 of the present invention is adapted to be mounted over the well head (not shown) and may be carried by way of its mounting component 13 on a support system generally shown at 25 (
In any event, it may be seen that the overall framework 30 of the mounting component 13 of the present invention may be relatively simple. As the forces which are transferred to the lower and upper parts of the mounting component 13 from the two major components 11 and 12 used in the injecting process, such forces are then transferred from this intermediate mounting component 13 to the supporting system 25. The mounting component 13 has little depth, as the base portion 20 of the gooseneck component 12 is mounted on a base plate 31 forming an upper surface on the framework 30 by way of interlocking parts 32 (
As previously indicated, because the forces from both the gooseneck component 12 and the injector component 11 itself are not transferred to a lower portion of the injector component, the framework 17 of the injector component 11 per se does not have to be structurally large nor does it have to be provided with an external force transmitting framework or cage to transfer forces developed in the gooseneck component 12. Thus, at the bottom of the injector component 11 there is no need for the conventional heavy base portion. It is preferable, however, to affix to a flat bottom portion 34 of the injector component 11, a laterally projecting work platform 35 for the convenience of personnel during maintenance of the injector component. For obvious reasons the work platform 35 need only be of a construction which is very light in relation to normal framing used in the lower part of known injection components. This platform 35 is not shown in place in
With particular reference to
There is provided a strain gauge 51 for connection between the injector component 11 and the mounting component 13, as best seen in
Various modifications to the disclosed embodiment of the invention will be obvious to those skilled in the art without departing from the spirit of the invention as defined in the appending claims.
Number | Date | Country | Kind |
---|---|---|---|
2,590,562 | May 2007 | CA | national |