This invention deals generally with gyratory crushers, and more specifically with a gyratory crusher for which all regular service and parts replacement can be accomplished from above the crusher.
Gyratory crushers are well established machines that are used for crushing rocks, ore, and other materials. They are very large and their basic structure comprises a bowl shaped as a cone with the wider end of the cone near the top of the crusher. A conical head assembly is located on the axis of the bowl, and the head assembly is oriented so that its smaller dimension is at the top of the crusher. To perform the crushing action, independent motions are applied to the conical head assembly. The first is rotation and the second is gyration.
In the typical gyratory crusher, large material is fed into the top between the large opening of the bowl and the small end of the head assembly where the volume is largest. The gyration of the head assembly is furnished by an eccentric drive, the rotation is driven by a gear, and vertical support and minor vertical adjustment is furnished by a hydraulic support. All these parts are located at the bottom of the crusher at the bottom of the conical head assembly. The combination of the rotation and the gyration applies forces that crush the pieces of material, and they fall lower into the reduced space within the bowl as they are reduced in size. Ultimately the material leaves the crusher through openings at the bottom of the crusher.
The hydraulic support assemblies on most gyratory crushers are large, heavy hydraulic cylindrical casings with robust bronze bushings, and they are located below the head assembly and the eccentric and gear drives. To service the wear parts of such a hydraulic support, it needs to be removed from the crusher, and to do this the assembly must be unbolted from the crusher frame and lowered onto a cart or other device which can move it out from beneath the crusher. This procedure is dangerous and time consuming because it requires personnel to be beneath the crusher to guide the movement of the hydraulic support while the crusher and the hydraulic support are being supported. Working below the crusher can expose personnel to hazards such as a poor visibility, poor communication, falls and tripping, high dust exposure, and rock falls.
It would be very beneficial to have a gyratory crusher that did not require access below the machine for scheduled and emergency service of the hydraulic support assembly and for removal of the eccentric drive, and other equipment.
The gyratory crusher of the present invention provides access for virtually all service through the top of the machine. The invention thereby eliminates the risks to personnel from working below the crusher, because the conical head assembly, the eccentric assembly, and the hydraulic support assembly, which comprises a piston assembly within and supported by a cylindrical support, are all removable through the top of the crusher. Furthermore, in the preferred embodiment the hydraulic support assembly is constructed so that the internal piston assembly contains essentially all the designed wear parts typically located within the hydraulic support assembly. In prior art crushers some of these wear parts are designed to be located on the cylindrical support. Such a preferred embodiment limits the need to remove the cylindrical support of the hydraulic support assembly in order to replace the designed wear parts. Of course, if necessary the cylindrical support also is removable through the top of the crusher.
To accomplish this top access feature, the eccentric assembly and the cylindrical support are each constructed to pass through the crusher frame structure. The basic configuration of each of the eccentric assembly and the cylindrical support is a cylinder with a circumferential lip protruding outward from the top edge of the cylinder. Such a structure permits each of these parts to be supported by a circumferential ledge built into the crusher. The other requirement to assure that the parts can be lowered into place and removed from above the crusher is that the outside diameter of the uppermost part, the eccentric assembly, must be larger than the outside diameter of the cylindrical support which must pass through the location formerly occupied by the eccentric assembly after the eccentric assembly is removed. That is, the cylindrical support must be sized to pass through the opening left after the eccentric assembly is removed.
The hydraulic assembly, comprising the cylindrical support and piston assembly, is located below the crusher and constructed with a tight fit and seal. The piston assembly fits within the cylindrical support and can be removed from within the cylinder support. The piston assembly can be removed with the eccentric assembly in place or with the eccentric assembly first removed.
The preferred embodiment of the present invention provides the particular benefit of having all the designed wear parts of the hydraulic support installed on the piston assembly. These include a piston wear ring, one or more hydraulic seals, and upper and lower piston bushings, with the latter two parts normally located on prior art cylindrical supports. The resulting advantage of this design is that that all such wear parts can be replaced at the same time, such as when the piston assembly is at a workbench. The piston assembly and wear parts can be serviced without requiring removal of the cylinder housing. In fact, the least time consuming service method is to have another piston assembly with new wear parts available at the crusher, and to replace the whole piston assembly immediately, so the replacement of the wear parts can take place independently of servicing the crusher.
The combination of service access from the top of the crusher and all the designed wear parts on only one piston assembly thus provides an apparatus which is both exceptionally safe and very efficient to service.
Head assembly 16 is located by an eccentric assembly 28 which is rotated by ring gear 24 which is conventionally driven through drive gear 27 and drive shaft 26. Eccentric assembly 28, within which the lower portion of main shaft 34 is held, imparts to head assembly 16 an eccentric motion, essentially a gyration, for crusher 10 to function. The motion is imparted to head assembly 16 by eccentric assembly 28 that has an eccentric center volume, although eccentric assembly 28 is itself cylindrical and mounted in centered cylindrical support hole 31 within center hub 30. Eccentric assembly 28 along with annular shell 32, are part of the bottom support structure of crusher 10. Eccentric assembly 28 rotates about center hole (31) and, as eccentric assembly 28 rotates, its eccentric center volume moves the bottom end of mainshaft 34 in an eccentric path imparting the gyratory motion to head assembly 16.
Mainshaft 34 of head assembly 16 fits into and is attached to eccentric assembly 28, and, at the top of crusher 10, mainshaft 34 is located by bushings or bearings within spider 36, which is the upper support member of crusher 10. Eccentric assembly and mainshaft 34 are supported from below eccentric assembly 28 by hydraulic support assembly 49, which is discussed with the following details of the present invention.
Returning to
One feature that permits removal of cylindrical support 38 from above is that the cylindrical support includes circumferential upper lip 50. Upper lip 50 is then supported by protruding support frame ledge 52 so that cylindrical support 38 can be lifted up out of its position in direction B. However, a further requirement of cylindrical support 38 is that its largest diameter, measured as the straight line distance between opposite points on the outer circumference of upper lip 50, must be smaller than the diameter of center hole (31), which corresponds to the inner diameter of eccentric bushing 44, measured as the straight line distance between opposite points on the inner surface of eccentric bushing 44, to permit the passage of cylindrical support 38 through support hole 31 and out of crusher 10. Put another way, assuming
Such a configuration permits removal of cylindrical support 38 from crusher 10 without the previously required access from underneath such crushers. However, the present invention also dramatically reduces the need for removing the cylindrical support 38 because of the design of piston assembly 46, which is the operational portion of hydraulic assembly 49. In the prior art such removal of the hydraulic assemblies was required on a regular basis so that the several parts within a cylindrical support which were designed to be subject to wear, specifically piston bushings, could be replaced. However, in the present invention, all the parts within hydraulic assembly 49 which are normally designed to be subject to wear are now actually part of piston assembly 46, so that it is usually necessary to remove only piston assembly 46 from crusher 10 to replace the wear parts. Under such circumstances, cylindrical support 38 may be left in its operating position.
As can be seen in
As can be seen in
It is to be understood that the form of this invention as shown is merely a preferred embodiment. Various changes may be made in the function and arrangement of parts; equivalent means may be substituted for those illustrated and described; and certain features may be used independently from others without departing from the spirit and scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2667309 | Becker | Jan 1954 | A |
2941732 | Cross et al. | Jun 1960 | A |
3133707 | Zimmerman | May 1964 | A |
3666188 | Lippmann | May 1972 | A |
4060205 | Pollak | Nov 1977 | A |
4339087 | Pollak | Jul 1982 | A |
4681269 | Arakawa | Jul 1987 | A |
6446977 | Thiede | Sep 2002 | B1 |
6536693 | Van Mullem et al. | Mar 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20090289135 A1 | Nov 2009 | US |