Topical ophthalmic or otic solution formulations containing moxifloxacin hydrochloride and dexamethasone phosphate

Information

  • Patent Grant
  • 7888370
  • Patent Number
    7,888,370
  • Date Filed
    Monday, November 24, 2008
    16 years ago
  • Date Issued
    Tuesday, February 15, 2011
    13 years ago
Abstract
Topical ophthalmic and otic solution compositions of moxifloxacin and dexamethasone phosphate are disclosed.
Description
BACKGROUND OF THE INVENTION

This invention relates to solution formulations of moxifloxacin and dexamethasone phosphate suitable for topical administration to the eye or ear.


Moxifloxacin is a known antibiotic compound. See, for example, U.S. Pat. Nos. 4,990,517 and 5,607,942. A topically administrable ophthalmic solution containing moxifloxacin is commercially available as VIGAMOX® (moxifloxacin HCl ophthalmic solution), 0.5% as base, from Alcon Laboratories, Inc. See U.S. Pat. No. 6,716,830. The '830 patent discloses compositions specifically formulated for topical application to ophthalmic, otic, and nasal tissues. The '830 patent discloses moxifloxacin compositions optionally containing an anti-inflammatory agent. Disclosed anti-inflammatory agents include steroidal and non-steroidal anti-inflammatory agents. According to the '830 patent, the preferred steroidal anti-inflammatory agents for ophthalmic and otic use include dexamethasone, loteprednol, rimexolone, prednisolone, fluorometholone, and hydrocortisone. A suspension composition containing moxifloxacin and dexamethasone (micronized) and having a pH of 5.5 is provided in Example 2 of the '830 patent. The '830 patent does not specifically disclose any solution compositions containing moxifloxacin and dexamethasone phosphate.


Dexamethasone phosphate is a known form of dexamethasone. See, for example, U.S. Pat. No. 2,939,873. This form of dexamethasone has been used in topical ophthalmic and otic compositions. See, for example, U.S. Pat. No. 5,679,665.


What is needed are stable, preserved, multi-dose solution compositions of moxifloxacin and dexamethasone that are suitable for topical administration to the eye and ear.


SUMMARY OF THE INVENTION

The compositions of the present invention are aqueous compositions of moxifloxacin and dexamethasone. The compositions are stable, preserved, multi-dose solution compositions. The compositions, which are topically administrable to the eye or ear, consist essentially of moxifloxacin hydrochloride, dexamethasone phosphate, edetate disodium, an ionic tonicity adjusting agent, boric acid, a nonionic surfactant, and either benzalkonium chloride or sorbitol. The compositions have a pH of 7.5-8.1.







DETAILED DESCRIPTION OF THE INVENTION

Unless indicated otherwise, all ingredient concentrations are presented in units of % weight/volume (% w/v).


Moxifloxacin is preferably present in the compositions of the present invention in the form of a pharmaceutically acceptable salt. Most preferably, moxifloxacin is present in the form of moxifloxacin hydrochloride. The compositions contain moxifloxacin in an amount equivalent to about 0.5% as the free base. The amount of moxifloxacin hydrochloride in the compositions of the present invention is 0.5-0.6%, and is most preferably 0.545%, which is equivalent to 0.5% moxifloxacin as base.


In addition to moxifloxacin, the aqueous compositions of the present invention contain dexamethasone phosphate. Dexamethasone phosphate is the required form of dexamethasone. Other known forms of dexamethasone, such as the 21-alcohol or 21-acetate form, do not permit the composition to be a solution composition. Suspension compositions are not as desirable for topical administration to the eye or ear as solution compositions because suspensions do not penetrate ophthalmic or otic tissues as well as solutions. The compositions of the present invention contain dexamethasone phosphate in an amount of about 0.1-0.12%. Preferably, the compositions of the present invention contain a pharmaceutically acceptable salt of dexamethasone phosphate in an amount equivalent to about 0.1-0.12% dexamethasone phosphate. For example, the compositions of the present invention may contain dexamethasone sodium phosphate in an amount of 0.10-0.132%. Most preferably, the compositions of the present invention contain 0.11% dexamethasone sodium phosphate, which is equivalent to 0.1% dexamethasone phosphate. Preferably, the compositions of the present invention contain dexamethasone in the form of dexamethasone sodium phosphate.


The compositions of the present invention contain boric acid in an amount from 0.2-0.4%, preferably 0.3%.


Edetate disodium is present in the compositions of the present invention in an amount of 0.005-0.02%. Most preferably, the edetate disodium is present in an amount of 0.01%.


An ionic tonicity adjusting agent is added to the compositions of the present invention in an amount sufficient to cause the final composition to have an osmolality of 270-330 mOsm/Kg. Preferably, the ionic tonicity adjusting agent is sodium chloride and is present in an amount of 0.5-0.75%. Most preferably, the compositions of the present invention contain 0.62% NaCl.


The compositions of the present invention contain an otically and ophthalmically acceptable non-ionic surfactant, such as a polysorbate surfactant, a block copolymer of ethylene oxide and propylene oxide surfactant (e.g., a pluronic or tetronic surfactant), or tyloxapol. Preferably, the compositions contain the non-ionic surfactant in an amount of 0.04-0.06%. Most preferably, the non-ionic surfactant is tyloxapol and the amount of tyloxapol in the compositions of the present invention is 0.05%.


The compositions contain a preservative ingredient or a preservation-enhancing ingredient selected from the group consisting of benzalkonium chloride and sorbitol. Preferably, the compositions of the present invention contain benzalkonium chloride if they are intended for topical otic administration and sorbitol if they are intended for topical ophthalmic administration. If present, the amount of benzalkonium chloride in the compositions is 0.005-0.015%, preferably 0.01%. If present, the amount of sorbitol in the compositions of the present invention is 0.1-0.3%, preferably 0.2%.


The pH of the aqueous solutions of the present invention is adjusted with an ophthalmically acceptable pH-adjusting agent. Ophthalmically acceptable pH adjusting agents are known and include, but are not limited to, hydrochloric acid (HCl) and sodium hydroxide (NaOH). The compositions of the present invention preferably contain NaOH or HCl to obtain the desired pH. The compositions of the present invention are formulated and maintained within a narrow pH range in order to keep the compositions stable over a commercially acceptable shelf-life period. The compositions of the present invention have a pH of 7.5-8.1, and most preferably 7.8-8.0.


The compositions of the present invention are preferably packaged in multi-dose plastic containers designed to deliver drops to the eye or ear. Preferably the plastic is low density polyethylene (LDPE) or polypropylene. Most preferably, the plastic is LDPE.


The following examples are intended to illustrate, but not limit, the present invention.


Example 1











Topical Ophthalmic Solution










Ingredient
Formulation A (% w/v)







Moxifloxacin
0.5-0.6



Hydrochloride



Dexamethasone Sodium
0.10-0.12



Phosphate



Edetate Disodium
0.005-0.02 



NaCl
 0.5-0.75



Boric Acid
0.2-0.4



Sorbitol
0.1-0.3



Tyloxapol
0.04-0.06



NaOH/HCl
q.s. pH 7.5-8.1



Purified Water
q.s. 100










Example 2











Preferred Topical Ophthalmic Solution










Ingredient
Formulation B (% w/v)














Moxifloxacin
0.545a



Hydrochloride



Dexamethasone Sodium
0.11b



Phosphate



Edetate Disodium
0.01c



NaCl
0.62



Boric Acid
0.3



Sorbitol
0.2



Tyloxapol
0.05



NaOHd/HCl
q.s. pH 7.8-8.0



Purified Water
q.s. 100








a0.545% is equivalent to 0.5% moxifloxacin as base





b0.11% is equivalent to 0.1% dexamethasone phosphate





cEdetate disodium, dehydrate is used





dSodium hydroxide equivalent to 0.0972% is added to facilitate dissolution of moxifloxacin hydrochloride. Additional NaOH may be added if required for pH adjustment.







Example 3











Topical Otic Solution










Ingredient
Formulation C (% w/v)







Moxifloxacin
0.5-0.6



Hydrochloride



Dexamethasone Sodium
0.10-0.12



Phosphate



Edetate Disodium
0.005-0.02 



NaCl
 0.5-0.75



Boric Acid
0.2-0.4



Benzalkonium Chloride
0.005-0.015



Tyloxapol
0.04-0.06



NaOH/HCl
q.s. pH 7.5-8.1



Purified Water
q.s. 100










Example 4











Preferred Topical Otic Solution










Ingredient
Formulation D (% w/v)














Moxifloxacin
0.545a



Hydrochloride



Dexamethasone Sodium
0.11b



Phosphate



Edetate Disodium
0.01c



NaCl
0.62



Boric Acid
0.3



Benzalkonium Chloride
0.01



Tyloxapol
0.05



NaOHd/HCl
q.s. pH 7.8-8.0



Purified Water
q.s. 100








a0.545% is equivalent to 0.5% moxifloxacin as base





b0.11% is equivalent to 0.1% dexamethasone phosphate





cEdetate disodium, dehydrate is used





dSodium hydroxide equivalent to 0.0972% is added to facilitate dissolution of moxifloxacin hydrochloride. Additional NaOH may be added if required for pH adjustment.







Example 5

Physical stability studies (clarity, precipitates by visual inspection, and pH stability) were conducted for three lots of the composition of Example 4. Samples of the composition were stored in 8 mL opaque LDPE bottles under the following conditions: 4° C./35% relative humidity; 25° C./40% relative humidity; 25° C./40% relative humidity (bottles stored in horizontal position); 30° C./65% relative humidity; 40° C./<25% relative humidity; light cabinet (25° C./40% relative humidity, with an overall illumination of not less than 1.2 million lux hours and integrated near ultraviolet energy of not less than 200 watt-hours/square meter); light cabinet and LDPE bottle in cardboard box; cycling conditions (CY) 1 week with a freeze at −20° C. for 28 hours, then thaw at 30° C. for 28 hours, for a total of 3 cycles in a week. The results are shown in Tables 1-3.









TABLE 1







Clarity












Age





Storage Condition
(Weeks)
Lot 1
Lot 2
Lot 3














Initial
0
Clear, NMT Ph. Eur. I*
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


 4° C./35% RH
52
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


25° C./40% RH
26
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I



52
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


25° C./40% RH,
13
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


Horizontal
26
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I



39
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I



52
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I



78
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


30° C./65% RH
52
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


40° C./<25% RH
13
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I



26
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


LC
6
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


LC/PKG
6
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I


CY: −20, 30
1
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I
Clear, NMT Ph. Eur. I





*“NMT Ph. Eur. I” means that the solution is clearer than European Pharmacopeal clarity standard number I.













TABLE 2







Precipitates













Storage
Age






Condition
(Weeks)
Lot 1
Lot 2
Lot 3

















Initial
0
None
None
None



 4° C./35% RH
52
None
None
None



25° C./40% RH
26
None
None
None




52
None
None
None



25° C./40% RH,
13
None
None
None



Horizontal
26
None
None
None




39
None
None
None




52
None
None
None




78
None
None
None



30° C./65% RH
52
None
None
None



40° C./<25% RH
13
None
None
None




26
None
None
None



LC
6
None
None
None



LC/PKG
6
None
None
None



CY: −20, 30
1
None
None
None

















TABLE 3







pH Stability













Storage
Age






Condition
(Weeks)
Lot 1
Lot 2
Lot 3

















Initial
0
7.92
7.97
7.98



 4° C./35% RH
52
7.89
7.89
7.90



25° C./40% RH
26
7.83
7.88
7.85




52
7.89
7.89
7.90



25° C./40% RH,
13
7.89
7.90
7.93



Horizontal
26
7.83
7.89
7.86




39
7.86
7.90
7.89




52
7.89
7.89
7.90




78
7.87
7.90
7.92



30° C./65% RH
52
7.88
7.88
7.88



40° C./<25% RH
13
7.89
7.91
7.94




26
7.83
7.88
7.85



LC
6
7.85, 7.86
7.90
7.90



LC/PKG
6
7.90
7.96
7.97



CY: −20, 30
1
7.92
7.91
7.91










Example 6

The stabilizing effect of various concentrations of tyloxapol in the composition of Example 4 was investigated in a freeze-thaw cycling study. Each cycle consisted of 24 hours at −20° C. followed by 24 hours at room temperature. The compositions were stored in LDPE containers sterilized using ethylene oxide gas or in glass containers. The results are shown in Tables 4 (LDPE containers) and 5 (glass containers).









TABLE 4







(LDPE Containers)









Tyloxapol Concentration



















0.05%


Cycle
Observations
0%
0.02%
0.03%
0.04%
(Example 4)





Initial
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation



pH
7.909
7.926
7.917
7.915
7.910


Cycle 1
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation


Cycle 2
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation



pH
7.886
7.900
7.882
7.897
7.893


Cycle 3
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation


Cycle 4
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
4-5
2-3 particles
No particles
No particles
No particles



Visual
particles in
in



Observation
4 bottles
4 bottles



pH
7.877
7.893
7.918
7.903
7.906
















TABLE 5







(Glass Containers)









Tyloxapol Concentration



















0.05%


Cycle
Observations
0%
0.02%
0.03%
0.04%
(Example 4)





Initial
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation



pH
7.909
7.926
7.917
7.915
7.910


Cycle 1
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation


Cycle 2
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation



pH
7.885
7.911
7.909
7.908
7.910


Cycle 3
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
No particles
No particles
No particles
No particles
No particles



Visual



Observation


Cycle 4
Clarity
Clear
Clear
Clear
Clear
Clear



Color
Yellow
Yellow
Yellow
Yellow
Yellow



Particles by
15-20
10-15
9-11 particles
5-10
1-2 particles



Visual
particles in
particles
in all bottles
particles
in all



Observation
all bottles
in all

in all
bottles





bottles

bottles



pH
7.877
7.900
7.920
7.911
7.906









Example 7

The physical stability of the indicated moxifloxacin and dexamethasone phosphate solution compositions was tested and the results are shown in Tables 6-9 below.









TABLE 6







Formulations at acidic pH (4.0 to 6.0)













Component
A
B
C
D
E
F
















Moxifloxacin Hydrochloride
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a


Dexamethasone Sodium
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b


Phosphate


Edetate Disodium
0.01
0.01
0.01
0.01
0.01
0.01


Boric Acid
0.3
0.3
0.3
0.3
0.3
0.3


Citric Acid, Monohydrate



0.5
0.5
0.5


Sodium Chloride
0.62
0.5
0.5





Glycerin



1.6
1.6
1.6


Sorbitol
0.2
0.2
0.2
0.2
0.2
0.2


Tyloxapol
0.05
0.05
0.05
0.05
0.05
0.05


NaOH/HCl
qs
qs
qs
qs
qs
qs



4.0 ± 0.1
5.0 ± 0.1
6.0 ± 0.1
4.0 ± 0.1
5.0 ± 0.1
6.0 ± 0.1


Purified Water
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100


Observations
Precipitatec
Precipitatec
Precipitatec
Precipitate
Precipitate
Precipitate






a0.545% Moxifloxacin hydrochloride is equivalent to 0.5% moxifloxacin as base.




b0.132% Dexamethasone sodium phosphate is equivalent to 0.1% dexamethasone.




cThe Moxifloxacin did not go into solution until the batch was heated. However as the solution was allowed to cool, crystals began to form in the solution and on the sides of the beaker.



Note:


For Formulations D, E, and F the compounding procedure consisted of two separate parts: part I - Moxifloxacin solution and part II - Dexamethasone Phosphate solution. Both solutions appeared clear. Upon addition of part II, to part I, the solutions initially appeared clear but after a few minutes of mixing the solutions became cloudy. Formulation E was brought down to pH 3.5 to see if the solution would become clear, but it did not.



















TABLE 7





Component
G
H
I
J
K
L





















Moxifloxacin Hydrochloride
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a


Dexamethasone Sodium Phosphate
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b


Edetate Disodium
0.01
0.01
0.01
0.01
0.01
0.01


Boric Acid
0.3
0.3
0.3
0.3
0.3
0.3


Sodium Chloride
0.44
0.44
0.36
0.36
0.26
0.19


Mannitol
0.5
0.5






Glycerin


0.5
0.5
0.8
1.0


Sorbitol








Tyloxapol
0.05
0.05
0.05
0.05
0.05
0.05


NaOH/HCl
qs
qs
qs
qs
qs
qs



7.2 ± 0.2
7.3 ± 0.2
7.2 ± 0.2
7.3 ± 0.2
6.8 ± 0.2
6.8 ± 0.2


Purified Water
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100


Observations - Day 1 @ 5° C.
Precipitate
Precipitate
Precipitate
Clear
Precipitated
Precipitated


Observations - Day 6 @ RT
Precipitate
Precipitate
Precipitate
Precipitatec
NA
NA


Observations - Day 12 @ RT
Precipitate
Precipitate
Precipitate
Precipitate
NA
NA


Observations - Day 14 @ RT
Precipitate
Precipitate
Precipitate
Precipitate
NA
NA






a0.545% Moxifloxacin hydrochloride is equivalent to 0.5% moxifloxacin as base.




b0.132% Dexamethasone sodium phosphate is equivalent to 0.1% dexamethasone.




cThis sample was stored at 5° C. and observed to have precipitate upon removal from 5° C. The sample was allowed to sit at RT but precipitate was still observed.




dPrecipitate was observed as soon as compounding was completed.
























TABLE 8





Component
Mc
Nc
O
P
Q
Rc
Sc
T
U
V

























Moxifloxacin Hydrochloride
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a


Dexamethasone Sodium
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b


Phosphate


Edetate Disodium
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01


Boric Acid
0.01
0.01
0.01
0.01
0.01
0.03
0.03
0.03
0.03
0.03


Sodium Borate
0.44
0.44
0.44
0.44
0.44
0.42
0.42
0.42
0.42
0.42


Sodium Citrate





1.0
1.0
1.0
1.0
1.0


Sodium Chloride
0.5
0.5
0.5
0.5
0.5
0.27
0.27
0.27
0.27
0.27


Sorbitol
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Tyloxapol
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05


NaOH/HCl
qs
qs
qs
qs
qs
qs
qs
qs
qs
qs



6.8 ± 0.2
7.0 ± 0.2
7.1 ± 0.2
7.2 ± 0.2
7.3 ± 0.2
6.8 ± 0.2
7.0 ± 0.2
7.1 ± 0.2
7.2 ± 0.2
7.3 ± 0.2


Purified Water
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100


Day 4 Observations
NA
NA
Precipitate
Precipitate
Clear
NA
NA
Precipitate
Precipitate
Clear


Day 11 Observations
NA
NA
NA
NA
1 of 2
NA
NA
NA
NA
Clear







Precipitate


Day 18 Observations
NA
NA
NA
NA
Both
NA
NA
NA
NA
Clear







Precipitate


Day 25 Observations
NA
NA
NA
NA
NA
NA
NA
NA
NA
Clear


Day 32 Observations
NA
NA
NA
NA
NA
NA
NA
NA
NA
Precipitate






a0.545% Moxifloxacin hydrochloride is equivalent to 0.5% moxifloxacin as base.




b0.132% Dexamethasone sodium phosphate is equivalent to 0.1% dexamethasone.




cThese formulations were discarded due to precipitate formation at completion of the compounding process.
























TABLE 9





Component
W
X
Y
Z
AA
AB
AC
AD
AE
AF

























Moxifloxacin Hydrochloride
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a
0.545a


Dexamethasone Sodium
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b
0.132b


Phosphate


Edetate Disodium
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01


Boric Acid
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


Sodium Chloride
0.5
0.5
0.5
0.5
0.5







Sorbitol
0.2
0.2
0.2
0.2
0.2
0..2
0..2
0..2
0..2
0..2


Tyloxapol
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05


NaOH/HCl
qs
qs
qs
qs
qs
qs
qs
qs
qs
qs



7.0 ± 0.2
7.3 ± 0.2
7.4 ± 0.2
7.8 ± 0.2
7.2 ± 0.2
7.0 ± 0.2
7.2 ± 0.2
7.3 ± 0.2
7.4 ± 0.2
7.8 ± 0.2


Purified Water
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100
qs 100


Day 10 Observations
Precipitate
Clear
Clear
Clear
Precipitate
Precipitate
Precipitate
Precipitate
Precipitate
Clear


Day 17 Observations
NA
Precipitate
Clear
Clear
NA
NA
NA
NA
NA
Clear


Day 24 Observations
NA
NA
Clear
Clear
NA
NA
NA
NA
NA
Precipitate


Day 31 Observations
NA
NA
Clear
Clear
NA
NA
NA
NA
NA
NA


Day 38 Observations
NA
NA
Clear
Clear
NA
NA
NA
NA
NA
NA


Day 45 Observations
NA
NA
Clear
Clear
NA
NA
NA
NA
NA
NA


18-week Observations
NA
NA
Clear
Clear
NA
NA
NA
NA
NA
NA


24-week Observations
NA
NA
Some
Clear
NA
NA
NA
NA
NA
NA





Precipitate


28-week Observations
NA
NA
More
Clear
NA
NA
NA
NA
NA
NA





Precipitate






a0.545% Moxifloxacin hydrochloride is equivalent to 0.5% moxifloxacin as base.




b0.132% Dexamethasone sodium phosphate is equivalent to 0.1% dexamethasone.







Example 10

The composition of Example 2 was subjected to preservative efficacy testing. Antimicrobial preservative effectiveness was determined using an organism challenge test according to the methods described in the United States Pharmacopeia (USP) and European Pharmacopoeia (Ph.Eur.). Samples were inoculated with known levels of one or more of the following: gram-positive (Staphylococcus aureus ATCC 6538) and gram-negative (Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 8739) vegetative bacteria, yeast (Candida albicans ATCC 10231) and mold (Aspergillus niger ATCC 16404). The samples were then pulled at specified intervals to determine if the antimicrobial preservative system was capable of killing or inhibiting the propagation of organisms purposely introduced into the formulation. The rate or level of antimicrobial activity determines compliance with the USP and/or Ph.Eur. preservative efficacy standards for ophthalmic preparations.


The compendial preservative standards for ophthalmic preparations are presented below:


For Bacteria:















Log Reduction of Organism Population















Ph. Eur. B



Time Pull
USP
Ph. Eur. A
(Min)







 6 hours

2




24 hours

3
1



 7 days


3



14 days
3





28 days
NI
NR
NI











For Fungi:





















Ph. Eur. B



Time Pull
USP
Ph. Eur. A
(Min)









 7 days

2




14 days
NI

1



28 days
NI
NI
NI







NR = No organisms recovered



NI = No increase at this or any following time pulls



— = No requirement at this time pull






The results of the microorganism challenge test are shown in Table 10 below.











TABLE 10









Composition











USP
Ph. Eur. B
Ph. Eur. A
















Example 2
Pass
Pass
Fail










Example 11

The composition of Example 4 was subjected to the same preservative efficacy testing described in Example 10. Additionally, similar compositions containing varying concentrations of benzalkonium chloride were tested. The compositions and the preservative efficacy testing results are shown in Table 11.














TABLE 11





Components
AG
AH
AI
AJ
Example 4




















Moxifloxacin Hydrochloride, NOC
0.545a
0.545a
0.545a
0.545a
0.545a


Dexamethasone Sodium Phosphate,
0.11b
0.11b
0.11b
0.11b
0.11b


USP


Benzalkonium Chloride, NF
0.0
0.0025
0.005
0.0075
0.01


Edetate Disodium, USP
0.01
0.01
0.01
0.01
0.01


Boric Acid, NF
0.3
0.3
0.3
0.3
0.3


Sodium Chloride, USP
0.62
0.62
0.62
0.62
0.62


Tyloxapol, USP
0.05
0.05
0.05
0.05
0.05


Sodium Hydroxide, NF
Adjust pH
Adjust pH
Adjust pH
Adjust pH
Adjust pH


and/or
to
to
to
to
to


Hydrochloric Acid, NF
7.9 ± 0.1
7.9 ± 0.1
7.9 ± 0.1
7.9 ± 0.1
7.9 ± 0.1


Purified Water, USP
qs 100
qs 100
qs 100
qs 100
qs 100


Preservative Effectiveness Test (PET)
Pass USP/EPB
Pass USP/EPB
Pass USP/EPB
Pass USP/
Pass USP/


Result
Fail EPA
Fail EPA
Fail EPA
EPB/
EPB/






EPA
EPA






a0.545% Moxifloxacin hydrochloride is equivalent to 0.5% moxifloxacin as base.




b0.11% Dexamethasone sodium phosphate is equivalent to 0.1%, dexamethasone phosphate.







The invention has been described by reference to certain preferred embodiments; however, it should be understood that it may be embodied in other specific forms or variations thereof without departing from its spirit or essential characteristics. The embodiments described above are therefore considered to be illustrative in all respects and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description.

Claims
  • 1. An aqueous, preserved, multi-dose, topically administrable otic solution composition consisting essentially of a) 0.545% (w/v) moxifloxacin hydrochloride;b) 0.11% (w/v) dexamethasone sodium phosphate;c) 0.01% (w/v) edetate disodium;d) 0.5-0.75% (w/v) sodium chloride;e) 0.3% (w/v) boric acid;f) 0.01% (w/v) benzalkonium chloride;g) 0.05% (w/v) tyloxapol;h) NaOH or HCl in an amount sufficient to cause the composition to have a pH from 7.8-8.0; andi) water.
Parent Case Info

This application claims priority from U.S. Provisional Application Ser. No. 60/990,452 filed Nov. 27, 2007.

US Referenced Citations (11)
Number Name Date Kind
2939873 Chemerda et al. Jun 1960 A
4990517 Peterson et al. Feb 1991 A
5387589 Kulkarni Feb 1995 A
5397771 Bechgaard et al. Mar 1995 A
5407926 Clark Apr 1995 A
5414011 Fu et al. May 1995 A
5607942 Peterson et al. Mar 1997 A
5679665 Bergamini et al. Oct 1997 A
6716830 Cagle et al. Apr 2004 B2
20020022629 Cagle et al. Feb 2002 A1
20020193370 Cagle et al. Dec 2002 A1
Foreign Referenced Citations (1)
Number Date Country
WO0189495 Nov 2001 WO
Related Publications (1)
Number Date Country
20090137539 A1 May 2009 US
Provisional Applications (1)
Number Date Country
60990452 Nov 2007 US