This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2013-001549, filed on Jan. 9, 2013, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate to a topography simulation apparatus, a topography simulation method and a recording medium.
When a surface of a substance is processed by chemical vapor deposition (CVD), reactive ion etching (RIE) or the like, a simulation of topography of the processed surface is an important technique. In this simulation, the surface of the substance is generally divided into computing elements to calculate a flux of a reactive species reaching each computing element and a local surface grow rate of the substance. However, long calculation time is required to consistently calculate the flux and the surface growth rate on the entire surface. This is because the calculation time increases with the square order of the number of the computing elements. On the other hand, reactive species are classified into an ionic species which has high straightness and is anisotropically incident, and a neutral species which has low straightness and is isotropically incident. However, since conventional simulations are carried out without considering the difference between these reactive species, a waste and an error are caused in the calculation.
Embodiments will now be explained with reference to the accompanying drawings. In the drawings, identical or similar components are denoted by identical reference numerals, and a redundant description thereof is omitted as needed.
In one embodiment, a topography simulation apparatus includes a division module configured to divide a surface of a substance into a plurality of computing elements. The apparatus further includes a determination module configured to extend straight lines in a plurality of directions from each computing element, and configured to determine whether each straight line contacts the surface of the substance and determine which computing element each straight line contacts. The apparatus further includes a calculation module configured to calculate, based on results of the determinations, a direct flux which is a flux of a reactive species directly reaching each computing element, and a form factor indicating a positional relationship between the computing elements. When the determinations are performed to calculate the form factor in a case where an ionic species reaching each computing element is reflected, the determination module performs the determinations by setting a cut-off angle for a reflection direction of the ionic species, and limiting the directions in which the straight lines are extended within a range of the cut-off angle. When a straight line from a first computing element among the plurality of computing elements contacts a second computing element, the determination module judges whether a straight line from the first computing element contacts a third computing element surrounding the second computing element, and judges whether the third computing element is positioned within the range of the cut-off angle of the first computing element. The determination module selects, as the third computing element, a computing element directly adjacent to the second computing element, and a computing element indirectly adjacent to the second computing element through one or more computing elements each having positive results of the judgments, and repeats the judgments until there is no candidate for the third computing element to be selected.
In the topography simulation method of this embodiment, an initial structure of a substance is inputted to an information processing apparatus (step S1).
Next, an initial level set function is generated from the inputted initial structure (step S2).
Next, a local surface growth rate “F” of the substance is calculated (step S3). It is assumed herein that the surface growth includes not only deposition on the surface but also etching of the surface. There is no need to calculate the surface growth rate “F” for each time step. In this embodiment, as described later, the surface growth rate “F” is calculated from the flux (total flux) on the surface of the substance, and the level set function from the surface growth rate “F” is calculated. Alternatively, the level set function from the flux may be calculated, and the calculation of the surface growth rate “F” may be omitted.
Next, the level set function after a lapse of a time Δt is calculated using the surface growth rate “F” (step S4). The level set function φt at a time t can be calculated from the following formula (1).
φt+F|∇φt|=0 (1)
where ∇ represents a vector differential operator, |∇φt| represents a norm of ∇φt. The level set function after a lapse of the time Δt allows calculation by performing time evolution on the level set function in accordance with a formula obtained by discretizing the formula (1). In this embodiment, the surface growth rate “F” and the flux in a certain surface topography may be calculated, instead of performing time evolution on the surface topography. This corresponds to the case where step S5 described later is determined as Yes in a first step.
Next, it is determined whether a preset process time has elapsed or not (step S5). When the process time is ended, the final topography of the substance is output (step S6), and the calculation ends. When the process time is not ended, the process returns to step S3.
In this embodiment, a level set method is employed as a technique for expressing the topography, but techniques, such as a cell method and a string method, other than the level set method may be employed.
Referring to
First, the substance surface represented by the level set method is divided into a plurality of computing elements (step S11).
The method of dividing the substance surface is not limited to the unit of mesh, but any method may be employed. The division of the substance surface is not necessarily performed for each time step, but may be performed immediately after step S1, for example.
Though the calculation area illustrated in
The reactive species are classified into an ionic species which has high straightness and is anisotropically incident, and a neutral species which has low straightness and is isotropically incident.
As illustrated in
Hereinafter, a total flux ΓB,ne of the neutral species and a total flux ΓB,ion of the ionic species in the computing element “B” will be described.
The total flux B,ne of the neutral species in the computing element “B” is represented by the sum of a direct flux ΓB,ne-direct of the neutral species in the computing element “B” and an indirect flux ΓaB,ne-indirect of the neutral species from any computing element “a” as shown in the following formula (2).
Similarly, the total flux ΓB,ion of the ionic species in the computing element “B” is represented by the sum of a direct flux ΓB,ion-direct in the computing element “B” and the total of an indirect flux ΓaB,ion-indirect of the ionic species from any computing element “a” as shown in the following formula (3).
Here, the indirect fluxes ΓaB,ne-indirect and ΓaB,ion-indirect can be respectively represented by, for example, the following formulas (4) and (5).
ΓaB,ne-indirect=(1−Sa(Γa,ion,Γa,ne))ν(a,B)g(a,B)Γa,ne+Pa(Γa,ion,Γa,ne)ν(a,B)gionS(a,B)Γa,ionS(a,B)Γa,ion (4)
ΓaB,ion-indirect=Ra(Γa,ion,Γa,ne))ν(a,B)gionR(a,B)Γa,ion (5)
Sa(Γa,ion, Γa,ne) represents an adhesion probability indicating a ratio of the flux of neutral species absorbed by each computing element “a”. Ra(Γa,ion, Γa,ne) represents a reflection probability indicating a ratio of the flux of ionic species reflected by each computing element “a”. Pa(Γa,ion, Γa,ne) represents a sputtering probability indicating a ratio at which the substance surface is etched by sputtering using the flux of ionic species to generate the flux of neutral species in each computing element “a”. The values of Sa(Γa,ion, Γa,ne), Ra(Γa,ion, Γa,ne) and Pa(Γa,ion, Γa,ne) depend on the total flux Γa,ion of the ionic species and the total flux Γa,ne of the neutral species in each computing element “a”.
Further, ν(a, B) represents a visibility factor (face-to-face visibility factor) indicating whether the computing element “a” and the computing element “B” are visible to each other. When the straight line connecting the computing elements “a” and “B” contact the substance surface, ν=0 holds. When the straight line does not contact the substance surface, ν=1 holds.
Further, g(a, B) represents a form factor illustrating a positional relationship (face relation) between the computing element “a” and the computing element “B”. The value of g(a, B) represents a degree at which the computing elements “a” and “B” are visible to each other. The value of g(a, B) depends on the distance and angle between the computing elements “a” and “B”.
In the case of treating the reflection of ionic species and sputtering using ionic species, the form factor “g” also depends on the straightness and scattering of ionic species. Therefore, in addition to the form factor “g”, a form factor (reflection form factor) gionR for reflection of the ionic species and a form factor (sputtering form factor) gionS for sputtering using ionic species are introduced in this embodiment.
gionR(a,B) represents a form factor between the computing element “a” and the computing element “B” when the ionic species reaching the computing element “a” is reflected. gionS(a,B) represents a form factor between the computing element “a” and the computing element “B” when the neutral species is generated by sputtering using the ionic species reaching the computing element “a”. On the other hand, g(a,B) represents a form factor between the computing element “a” and the computing element “B” when the neutral species reaching the computing element “a” is scattered again from the computing element “a”. Examples of the case where the neutral species is scattered again include a case where the absorbed neutral species is discharged and a case where the neutral species is reflected.
When the formula (4) and the formula (5) are respectively substituted into the formula (2) and the formula (3), the total fluxes Γa,ion and Γa,ne in the computing element “B” can be represented by the following formulas (6) and (7), respectively.
Next, in the flow of
Next, the direct fluxes Γi,ne-direct and Γi,ion-direct of each computing element “i” are respectively used as temporal total fluxes Γi,ne and Γi,ion, and the adhesion probability Si(Γi,ion, Γi,ne), the reflection probability Ri(Γi,ion, Γi,ne) and the sputtering probability Pi(Γi,ion, Γi,ne) in each computing element “i” are calculated (step S15).
Next, the total fluxes Γi,ion and Γi,ne in each computing element “i” are respectively calculated from the following formulas (8) and (9) by using the visibility factor ν, the form factors g, gionR and gionS, the direct fluxes Γi,ne-direct and Γi,ion-direct, the adhesion probability Si(Γi,ion, Γi,ne), the reflection probability Ri(Γi,ion, Γi,ne), and the sputtering probability Pi(Γi,ion, Γi,ne) (step S16).
Next, the processes of step S15 and step S16 are repeated until the values of the adhesion probability Si(Γi,ion, Γi,ne), the reflection probability Ri(Γi,ion, Γi,ne), and the sputtering probability Pi(Γi,ion, Γi,ne) are converged (step S17). In the second and subsequent step S15, the total fluxes Γi,ion and Γi,ne calculated in the previous step S16 are used as the temporal total fluxes Γi,ion and Γi,ne, respectively. In step S17, it is determined whether the values of Si(Γi,ion, Γi,ne), Ri(Γi,ion, Γi,ne), and Pi(Γi,ion, Γi,ne) are converged or not based on whether a change in Si(Γi,ion, Γi,ne), Ri(Γi,ion, Γi,ne), and Pi(Γi,ion, Γi,ne) is equal to or smaller than a threshold. The total fluxes Γi,ion and Γi,ne obtained when the values of these probabilities Si(Γi,ion, Γi,ne), Ri(Γi,ion, Γi,ne) and Pi(Γi,ion, Γi,ne) are converged are treated as correct calculation results of the total fluxes Γi,ion and Γi,ne.
When the number of computing elements is “N”, the visibility factor ν and the form factors g, gionR, and gionS between arbitrary computing elements can be collectively represented as N×N matrix. The visibility factor ν and the form factors gionR, and gionS, which are represented in a matrix form, are respectively referred to as a visibility factor matrix and a form factor matrix. The flux in any computing element can be represented by an N-row vector. The flux represented by a vector form is referred to as a flux vector.
In this case, the formula (8) can be expressed by a matrix equation as in the following formula (10).
where “I”, “J” represents the number of computing elements to be processed, and I=J=N holds, for example. In the formula (13), for convenience of notation space, the adhesion probability Sj(Γj,ion, Γj,ne) is abbreviated as Sj(Γj) and terms including the sputtering probability Pi)Γi,ion, Γi,ne) are omitted.
The matrix equation (10) may be solved by any solution. Examples of the solution include an iterative method (Gauss-Seidel iteration method, SOR method, Jacobi method, conjugate gradient method, etc.), and a direct method (Gaussian elimination, LU decomposition, Cholesky decomposition etc.). In the case of solving the matrix equation (10), when the matrix Ane is a sparse matrix, memory saving and speed-up of the calculation process may be achieved by using a routine suitable for the sparse matrix using a storage method such as CRS.
The formula (9) can also be represented by a matrix equation similar to that of the formula (8). In this embodiment, these two matrix equations can be solved by the above-mentioned solution.
Next, in the flow of
F
i
=f(Γi,j, . . . , Γk,i, . . . , ΓK,i) (14)
where “k” is any real number that satisfies 1≦k≦K. The “κ” types of reactive species may include only one of neutral species and ionic species, or may include both neutral species and ionic species. As described above, the process of step S3 is ended.
Referring to
In steps S12 and S13, the direct flux ΓB,ne-direct of the neutral species, and the direct flux ΓB,ion-direct, the visibility factor ν, and the form factor “g” of the ionic species are calculated. In this case, the direct flux ΓB,ne-direct of the neutral species and the direct flux ΓB,ion-direct of the ionic species are calculated by the same method. In the following description, methods for calculating the direct flux ΓB,ne-direct the visibility factor ν, and the form factor “g” of the neutral species will be described, and the description of the method of calculating the direct flux ΓB,ion-direct of the ionic species is omitted. For convenience of description, the direct flux ΓB,ne-direct of the neutral species is simply referred to as a direct flux ΓB,direct.
In the flow of
The direct flux ΓB,direct in the computing element “B” is calculated by the following formula (15).
ΓB,direct=fflatNorm∫02π∫0πη(θlocal,φlocal)f(θlocal)|sin θlocal|dθlocaldφlocal (15)
where η(θlocal, φlocal) represents a visibility determination result when a straight line is extended in the directions of θlocal and φlocal from the computing element “B”, and is referred to as a visibility determination value.
As to the difference between the visibility determination value η and the visibility factor ν, see
Further, fflat represents a direct flux at a flat surface, and is given in advance as an input value, Norm represents a normalization constant given by the following formula (16), and f(θlocal) represents a factor of an area fragment of a direct flux, and is given by the following formula (17), for example.
where θin represents an incident angle as illustrated in
The flow of
First, the value of the sequence θlocal(m) of the zenith angle θocal (m=0, 1, . . . , M−1), and the value of the sequence θlocal(o) of the azimuth angle φlocal (o=0, 1, . . . , O−1) are calculated (step S21). This corresponds to division of the range of the zenith angle θlocal from 0 to π into “M” areas and division of the range of the azimuth angle φlocal from 0 to 2π into “O” areas. As described later, the integral calculation of the formula (15) is discretized using the sequences θlocal(m) and φlocal(o).
In the case of using the area fragment factor illustrated in the formula (17) is used for the calculation of the direct flux ΓB,direct of the formula (15), the sequences θlocal(m) and φlocal(o) as represented by the following formulas (18) and (19) are prepared.
where the sequence ∂(m) is given by the following formula (20).
where θlocal(m) of the formula (18) represents an angle at which the integral result becomes ∂(m) when f(θlocal)|sin θlocal| is integrated from θlocal=0 to θlocal=θlocal(m). The relation of the formula (21) is established from the definition, and the formula (22) is deduced from the formula (21) and is transformed to thereby obtain the formula (18).
∂(m)=[−cosN+1θlocal]0θ
∂(m)=1−cosN+1θlocal(m) (22)
As described above, in step S21, the range of the zenith angle θlocal from 0 to π is divided at irregular intervals, and the range of the azimuth angle φlocal from 0 to 2π is divided at regular intervals. In this embodiment, not only the range of the zenith angle θlocal, but also the range of the azimuth angle φlocal may be divided at irregular intervals. When the integral range of the zenith angle θlocal is set from 0 to π/2, the range of the zenith angle θlocal not from 0 to π but from 0 to π/2 may be divided into “M” areas.
Next, straight lines are extended in a plurality of directions from each computing element “a”, and it is determined whether each straight line contacts the substance surface, and determined which computing element each straight line contacts (step S24). The directions in which the straight lines are extended from each computing element “a” is determined by the sequences θlocal(m) and φlocal(o) in each computing element “a”. Specifically, in step S24, the straight lines are extended in the directions of θlocal(m) and φlocal(o) from each computing element “a”. Accordingly, M×O straight lines are extended from each computing element “a”. The process of step S24 is performed for each of the “N” computing elements “a”. A block that performs the process of step S24 is an example of a determination module of the disclosure.
In step S24, the visibility determination may be performed in consideration of a mirror surface boundary condition and a periodic boundary condition.
As described above, in step S24, it is determined whether each straight line from a plurality of computing elements “a” contacts the substance surface, and determined which computing element each straight line contacts. The process of step S25 is performed for the straight line that contacts the substance surface, and the process of step S26 is performed for the straight line that does not contact the substance surface.
In step S25, when any straight line from a computing element “a” contacts the computing element “B”, the computing element “a” is counted as a visible computing element of the computing element “B”. On the other hand, when no straight line from a computing element “a” contacts the computing element B, the computing element “a” is not counted as the visible computing element of the computing element “B”. Such a process is performed on all the computing elements “a”, thereby specifying all the computing elements “a” that are visible from the computing element “B”. This process is not limited to the computing element B, but is performed on all the “N” computing elements in a similar manner.
On the other hand, in step S26, when a straight line from a computing element “a” does not contact the substance surface (i.e., reaches the gas space), the direction of the straight line is counted as a gas space visible direction of the computing element “a”. Such a process is performed on all straight lines, thereby specifying all the directions in which the reactive species directly reaches each computing element “a” from the gas space. This specification result can be used for calculation of the direct flux. For example, the counting result of the gas space visible direction of the computing element “B” is used for the calculation of the direct flux in the computing element “B”.
In the flow of
where θBlocal(m) and φBlocal(o) respectively represent sequences θlocal(m) and φlocal(o) in the computing element “B”. Further, η(θBlocal, φBlocal) in the formula (23) is represented by η=1 in the gas space visible direction of the computing element “B”, and is represented by η=0 in the other directions. Accordingly, the formula (23) can be calculated by using the gas space visible direction of the computing element B counted in step S26.
In the flow of
where κ(θBlocal, φBlocal, a) represents a result of visibility determination as to whether each computing element “a” is visible in the directions of θBlocal and φBlocal from the computing element “B”, and is referred to as a computing element visibility determination value. When the computing element “a” is visible in the directions of θBlocal and φBlocal from the computing element “B”, κ(θBlocal, φBlocal, a)=1 holds. When the computing element “a” is invisible, κ(θBlocal, φBlocal, a)=0 holds. Accordingly, the formula (24) can be calculated in consideration of whether the computing element “a” is counted as the visible computing element of the computing element “B” in step S25.
Examples of calculating the computing element visibility determination value “κ” two-dimensionally and three-dimensionally are respectively illustrated in
The visibility factor ν(a, B) can be calculated from the calculation result of g(a, B) obtained by the formula (24). Specifically, when g(a, B)=0, ν(a, B)=0 holds, and when g(a, B)>0, ν(a, B)=1 holds.
As described above, in steps S28 and S29, the direct flux ΓB,direct, the visibility factor ν(a, B), and the form factor g(a, B) are calculated based on the determination result of step S24. Blocks that perform the processes of steps S28 and S29 are examples of a calculation module of the disclosure. In step S28, both the direct flux ΓB,ne-direct of the neutral species and the direct flux ΓB,ion-direct of the ionic species are calculated.
The calculation results of ΓB,ne-direct, ΓB,ion-direct, ν(a,B), and g(a,B) obtained in the flow of
Referring to
In step S14, the reflection form factor gionR for treating the reflection of ionic species and the sputtering form factor gionS for treating the generation of neutral species due to sputtering using ionic species are calculated. The method of calculating these form factors gionR and gionS is substantially similar to the method of calculating the form factor “g” in
First, in the case of calculating the form factors gionR and gionS, cut-off for the directions in which the straight lines are extended is carried out in step S24 of
As described above with reference to
It is known that the generation of neutral species due to sputtering using ionic species exhibits a high anisotropy, as with the reflection of ionic species. Therefore, when step S24 is carried out for calculating the sputtering form factor gionS, a cut-off angle for a generation direction of the neutral species is set, and the directions in which the straight lines are extended are limited within the range of the cut-off angle, as in the case of the reflection form factor gionR.
The cut-off angle for the sputtering form factor gionS may be set to the same value as the cut-off angle for the reflection form factor gionR, or may be set to a value different from the cut-off angle for the reflection form factor gionR.
In
The cut-off angle θcut can be defined in various manners. For example, it is assumed a case where an incident angle distribution of ionic species is defined as in the following formula (25).
ΓB,ion-direct=fflatNorm∫02π∫0πη(θlocal,φlocal)cosN−1θlocal cos θin|sin θlocal|dθlocaldφlocal (25)
Note that the formula (25) is equal to a formula obtained by substituting the formula (17) into the formula (15).
In the case of using the formula (25), the cut-off angle θcut is desirably set such that directions θlocal and φlocal in which the value of the expression integrated in the formula (25) is decreased are cut off. In this case, since this expression depends on the computing element number (the number of computing elements) N, the cut-off angle θcut is also set to be dependent on the computing element number “N” as in the following formula (26).
θcut=f(N) (26)
In the formula (26), the cut-off angle θcut is a function of the computing element number “N”, and therefore depends on the computing element number “N”. In this case, the cut-off angle θcut varies depending on the computing element number “N” in such a manner that θcut=30 degrees when N=10, θcut=10 degrees when N=100, and θcut=3 degrees when N=1000, for example.
Second, when a straight line from the computing element “a” contacts the computing element “B” in the case of calculating the form factors gionR and gionS, the process of step S24 is also performed on the computing elements C and C′ surrounding the computing element “B” (see
Specifically, a new straight line is extended toward the computing element “C” which is directly adjacent to the computing element “B” from the computing element “a”, and it is judged whether this straight line contacts the computing element “C” without involving other computing elements. It is also judged whether the computing element “C” is positioned within the range of the cut-off angle θcut of the computing element “a”. In this way, the determination process of step S24 is also performed on the computing element “C”, as with the computing element “B”.
When the straight line from the computing element “a” contacts the computing element “C” and the computing element “C” is positioned within the range of the cut-off angle θcut of the computing element “a” (that is, when positive results of the judgments are obtained with respect to the computing element “C”), the process of step S24 is also performed on the computing element “C′” which is directly adjacent to the computing element “C”.
In this embodiment, such a process is repeated until there is no candidate for computing elements to be judged. Specifically, the method of this embodiment selects, as the third computing element, a computing element directly adjacent to the second computing element “B”, and a computing element indirectly adjacent to the second computing element “B” through one or more computing elements having positive results of the judgments, and the judgments are repeated until there is no candidate for the third computing element to be selected.
In
The process of
In steps S31 to S33 of
In step S33, it is determined whether the straight line from the computing element “a” contacts the computing element “B”. The state of this process is illustrated in
A flag “θ” corresponds to an initial value. A computing element having a flag “1” indicates that the straight line from the computing element “a” contacts the computing element and the computing element is positioned within the range of the cut-off angle. A computing element having a flag “2” indicates that the straight line from the computing element “a” does not contact the computing element, or that the computing element is positioned outside the range of the cut-off angle.
When the straight line from the computing element “a” contacts the computing element “B”, the flag “1” is set to the computing element “B” (step S35). On the other hand, when the straight line from the computing element “a” does not contact the computing element “B”, the flag “2” is set to the computing element “B” (step S40).
In step S34, it is determined whether the computing element “B” is positioned within the range of the cut-off angle of the computing element “a”. However, in steps S31 to S32, straight lines are extended only in a direction within the range of the cut-off angle. Accordingly, the computing element “B” is positioned within the range of the cut-off angle in principle. This step S34 is important for a subsequent process in the case of cut-off determination on the computing elements surrounding the computing element “B”. Xmax, Ymax, Xmin, and Ymin illustrated in
When the straight line from the computing element “a” contacts the computing element “B”, the process similar to that for the computing element “B” is performed on each computing element “C” directly adjacent to the computing element “B” as illustrated in
Specifically, a new straight line is extended toward the computing element “C” from the computing element “a”, and it is determined (judged) whether this straight line contacts the computing element “C” (step S33). It is also determined (judged) whether the computing element “C” is positioned within the range of the cut-off angle of the computing element “a” (step S34).
When the straight line from the computing element “a” contacts a certain computing element “C” and the computing element “C” is positioned within the range of the cut-off angle, the flag “1” is set to the computing element “C” (step S35). On the other hand, when the straight line from the computing element “a” does not contact the computing element “C”, or the computing element “C” is positioned outside the range of the cut-off angle, the flag “2” is set to the computing element “C” (step S40).
When the flag “1” is set to a certain computing element “C′”, the process similar to that for the computing element “B” is performed on each computing element “C” which is directly adjacent to the computing element “C” (steps S36 to S39) as illustrated in
In this embodiment, the processes of steps S36 to S39 are repeated until there is no candidate for computing elements to be determined (judged). Specifically, as illustrated in
A symbol “R” in
In this embodiment, a local coordinate system unique to each computing element is used in steps S12 to S14. Alternatively, a global coordinate system common to all computing elements may be used.
The calculation time and the calculation errors in the first embodiment will be described in consideration of the above description.
In the conventional method, it takes a time proportional to the number “N” of computing elements to calculate the direct fluxes ΓB,ne-direct and ΓB,ion-direct of any computing element “B”. This is because a loop calculation related to the computing element “B” is repeatedly performed N times. In the conventional method, it takes a time proportional to N2 to calculate the visibility factor ν(a,B) and the form factors g(a,B), gionR(a,B), and gionS(a,B) between arbitrary computing elements “a” and “B”. This is because a loop calculation related to the computing element “a” and a loop calculation related to the computing element “B” are each repeatedly performed N times. The calculation time for the visibility factor and the form factor further increases when a mirror surface boundary condition and a periodic boundary condition are employed. Accordingly, most of the calculation time in the conventional method is used for calculation of the visibility factor and the form factor.
On the other hand, in this embodiment, as illustrated in
In this embodiment, in the case of performing the determination process of step S24 for calculating the reflection form factor gionR and the sputtering form factor gionS in consideration of the difference in characteristics between ionic species and neutral species, a cut-off angle is set for the directions in which the ionic species is reflected and for the directions in which the neutral species is generated due to sputtering using ionic species, and the directions in which the straight lines are extended are limited within the range of the cut-off angle. Further, in this embodiment, the above-mentioned determination process is repeatedly applied to the computing elements surrounding the computing elements contacting these straight lines. Therefore, according to this embodiment, it is possible to reduce a waste of calculation to shorten the calculation time, and to reduce calculation errors by taking more time for useful calculation instead of useless calculation. When the generation of neutral species can be ignored, for example, when the amount of generated neutral species is small, the topography simulation may be performed while ignoring terms including the sputtering form factor gionS in the formula (4).
In the calculations of g, gionR and gionS this embodiment, the number of 0 elements in the g matrix, the gionR matrix, and the gionS matrix (as well as the ν matrix) tends to increase as compared with the conventional method of calculating g, gionR and gionS in the N2-times loop calculations. In this embodiment, straight lines are extended in a plurality of directions from each computing element, and it is determined whether each straight line contacts the substance surface and determined which computing element the straight lines contact to calculate the form factors. Consequently, in this embodiment, the probability that the form factors are 0 significantly increases as compared with the case where the loop calculation is performed between all the pairs of the computing elements, so that the ratio of 0 elements to all matrix elements of each of the g matrix, the gionR matrix, and the gionS matrix becomes ½ or more (more specifically, 0.8 or more in many cases). In this case, more than half of non-diagonal elements of the matrix Ane in the formula (13) become 0, and the matrix equation of the formula (10) becomes a simple form (similarly, more than half of non-diagonal elements of the matrix Aion related to ionic species become 0, and the matrix equation including the matrix Aion becomes a simple form). As a result, according to this embodiment, the calculation time and memory usage can be significantly reduced.
Accordingly, in the case of performing a chemical reaction calculation while repeatedly solving these matrix equations, this embodiment employs a calculation algorithm focusing on these 0 elements, thereby enabling a further reduction in the calculation time. Furthermore, the employment of a sparse matrix holding algorithm such as CRS enables memory saving as the number of 0 elements increases. In this case, the matrix equations are repeatedly solved until Si(Γi), Ri(Γi), and Pi(Γi) are converged in step S17 of
Effects of the first embodiment will be described.
As described above, in this embodiment, straight lines are extended in a plurality of directions from each computing element, it is determined whether each straight line contacts the substance surface and determined which computing element each straight line contacts, and the direct flux and the form factor are calculated based on the determination results. Further, the visibility factor is calculated based on the determination results.
Therefore, according to this embodiment, the calculation times for the direct flux and the form factor can be suppressed to time proportional to the number of computing elements. Therefore, according to this embodiment, the calculation time for the form factor that affects the calculation time for the indirect flux can be shortened, thereby enabling topography simulation to be performed high-speed in consideration of the reactive species directly or indirectly reaching the substance surface.
Specific examples of this effect will be described below with reference to
In this embodiment, in the case of performing the above-mentioned determination process for calculating the reflection form factor and the sputtering form factor in consideration of the difference in characteristics between ionic species and neutral species, a cut-off angle for a direction in which the ionic species is reflected and for a direction in which the neutral species is generated due to sputtering using ionic species is set, and the directions in which the straight lines are extended are limited within the range of the cut-off angle. Furthermore, the above-mentioned determination process is also repeatedly applied to the computing elements surrounding the computing element contacting these straight lines.
Therefore, according to this embodiment, it is possible to reduce a waste of calculation to shorten the calculation time, and to reduce calculation errors by taking more time for useful calculation instead of useless calculation, thereby enabling high-speed, high-precision topography simulation.
Specific examples of this effect will be described later with reference to
(5.1) Explanations of
As illustrated in
(5.2) Explanations of
As illustrated in
The topography simulation method of the first embodiment may be executed using any information processing apparatus. In a second embodiment, a topography simulation apparatus will be described as an example of such an information processing apparatus.
The topography simulation apparatus in
The control module 11 controls the operation of the topography simulation apparatus. The control module 11 executes the topography simulation method of the first embodiment, for example. The control module 11 will be described in detail later.
The display module 12 includes a display device such as a liquid crystal monitor. The display module 12 displays a configuration information input screen for the topography simulation, and a calculation result of topography simulation, for example.
The input module 13 includes input devices such as a keyboard 13a and a mouse 13b. The input module 13 is used for inputting configuration information for the topography simulation, for example. Examples of the configuration information include information on a calculation formula, information on an experimental value or a predicted value, information on the structure of the substance, information on a flux, and instruction information on the configurations and procedures for the topography simulation.
The control module 11 includes a CPU (central processing unit) 21, a ROM (read only memory) 22, a RAM (random access memory) 23, an HDD (hard disk drive) 24, a memory drive 25 such as a CD (compact disc) drive, and a memory I/F (interface) 26 such as a memory port or a memory slot.
In this embodiment, a topography simulation program, which is a program for the topography simulation method of the first embodiment, is stored in the ROM 22 or the HDD 24. Upon receiving predetermined instruction information from the input module 13, the CPU 21 reads out the program from the ROM 22 or the HDD 24, develops the read program in the RAM 23, and executes the topography simulation by this program. Various data generated during this process are held in the RAM 23.
In this embodiment, a non-transitory computer-readable recording medium may contain the topography simulation program, and the topography simulation program may be installed from the recording medium into the ROM 22 or the HDD 24. Examples of the recording medium include a CD-ROM and a DVD-ROM (digital versatile disk ROM).
Further, in this embodiment, the topography simulation program can be downloaded via a network such as the Internet to be installed in the ROM 22 or the HDD 24.
As described above, according to this embodiment, it is possible to provide a topography simulation apparatus and a topography simulation program for executing the topography simulation method of the first embodiment.
In the first and second embodiments, a semiconductor device is adopted as an example of the object to which the topography simulation is applied, but the topography simulation can also be applied to devices other than the semiconductor device. Examples of such devices include a micro electro mechanical systems (MEMS) device and a display device.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel apparatuses, methods and media described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the apparatuses, methods and media described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2013-001549 | Jan 2013 | JP | national |