Non-Abelian quasiparticles are collective excitations of topological phases that exhibit exotic exchange statistics. These include non-Abelian anyons, whose exchange statistics are governed by higher-dimensional representations of the braid group. Such quasiparticles collectively possess a multi-dimensional, non-local (topological) state space that is essentially immune to local perturbations. This property makes non-Abelian topological phases appealing platforms for quantum information processing, as they allow for topologically protected quantum computation (TQC). In the TQC approach, computational gates may be generated through topological operations, such as braiding exchanges of quasiparticles, in which case they are also topologically protected. The physical implementation of such protected gates poses one of the most significant challenges for realization of TQC.
The initial conception of TQC envisioned physically translocating non-Abelian quasiparticles to perform braiding operations as the primary means of generating gates. Proposals for moving quasiparticles include simply dragging them around (e.g., with a Scanning Tunneling Microscope (STM) tip, if they are electrically charged) and a “bucket brigade” series of induced hoppings from one site to the next, originating at one location and terminating at another. A subsequent proposal, known as “measurement-only TQC” (MOTQC), introduced methods of effectively generating braiding transformations on the state space, without physically moving the anyons associated with the state space.
As discussed hereinbelow, this disclosure describes techniques for teleporting state information encoded by non-Abelian quasiparticles. In some embodiments, state information from a pair of computational non-Abelian quasiparticles is teleported to generate operations in the state space that are equivalent to operations obtained by exchanging the pair of computational non-Abelian quasiparticles. Teleportation of state information may include utilizing a pair of ancillary non-Abelian quasiparticles.
Example systems that may be used for teleporting state information may include a quasiparticle interactor, which may induce interactions between selected quasiparticles. The quasiparticle interactor may induce interactions adiabatically between selected quasiparticles. The quasiparticle interactor may alter, in a system having the quasiparticles, one or more of: local-chemical potential; local-Zeeman splitting; local-superconductor energy gap; or local-magnetic fields. (“Local” means in the vicinity of the quasiparticles being influenced and not “globally” over the entire system.)
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The same reference numbers in different figures indicate similar or identical items.
Overview
This disclosure describes utilizing tunable interactions of non-Abelian quasi particles.
This disclosure includes the following sections: Section A describes example networks in which non-Abelian quasiparticle state information may be teleported via tunable interactions and in which quasiparticle exchange transformations may be generated via tunable interactions; Section B describes an example framework for anyonic teleportation and generation of braiding transformations via tunable interactions.
A: Networks and Devices
This section includes subsections which describe example topological qubit arrays, topological qubit-wires, and non-Abelian quasiparticle state teleportation systems. In the following discussion, various features and component are discussed with respect to Majorana quasiparticles and Majorana nanowires. Such discussion is non-limiting and is provided for the sake of clarity. In other embodiments, fractional quantum Hall systems such as 5/2 quantum Hall systems and other systems may be employed.
Illustrative Topological Qubit Array
A topological qubit-wire 102 includes one or more topological phase segments 104, which are also referred to as Majorana segments, and non-topological phase segments 106. For the purposes of this disclosure a topological phase segment is defined as being in a topological superconducting phase with Majorana modes. In some instances, the Majorana modes may be unpaired zero-energy or low-energy localized at opposed ends of the segment. In some instances, the Majorana modes may be paired (e.g., they may be entangled or may have an interaction).
In some embodiments, the non-topological phase segments 106 can be induced to change into Majorana segments 104 and vice-versa. For example, an electric potential may be applied to a portion of a non-topological phase segment 106 to change the chemical potential in the portion of the non-topological phase segment 106, and the change in the chemical potential may then cause the portion to enter the topological superconducting phase of a Majorana segment. However, in other embodiments, the non-topological phase segments 106 may not be induced, and/or are not inducible, to change into Majorana segments 104.
A Majorana segment 104 has length of Majorana wire 108 and may, in some instances, have unpaired non-Abelian quasiparticles 110 localized at opposite ends of the Majorana wire 108. The non-Abelian quasiparticles 110 may be Majorana quasiparticles.
In some instances, a Majorana segment 104 may have a pair of “ancillary quasiparticles” that may be utilized in teleporting state information from one non-Abelian quasiparticle 110 to another non-Abelian quasiparticle 110. The “ancillary quasiparticles” may be entangled and/or in a preferred fusion channel and may be non-Abelian quasiparticles (e.g., Majorana quasiparticles or non-Abelian anyons).
A topological qubit 112 may be comprised of two or more non-Abelian quasiparticles 110. Calculations may be performed by placing the topological qubits 112 in an initial state, evolving the topological qubits 112 such as by generating exchange transformations of two or more of the non-Abelian quasiparticles 110, and determining a final state of the topological qubits 112.
Each Majorana segment 204 has length of Majorana wire 208 and may, in some instances, have unpaired non-Abelian quasiparticles 210 localized at opposite ends of the Majorana wire 208. The non-Abelian quasiparticles 210 may be Majorana quasiparticles.
In some instances, a Majorana segment 204 may have a pair of “ancillary quasiparticles” that may be utilized in teleporting state information from one non-Abelian quasiparticle 210 to another non-Abelian quasiparticle 210. The “ancillary quasiparticles” may be entangled and/or be in a preferred fusion channel and may be non-Abelian quasiparticles (e.g., Majorana quasiparticles or non-Abelian anyons).
Illustrative Examples of Topological Qubit-Wire
The topological qubit-wire 300 includes a superconductor 302 and a nanowire 304. The superconductor 302 may be an s-wave superconductor such as aluminum (Al) or nobium (Nb).
The nanowire 304 may be a 1D semiconductor wire or a quasi-1D semiconductor wire having multi-modes and having a length (Lx), a width (Ly) and a thickness (Lz), where the width is larger than the thickness and the length is larger than the width. For example, the width may be in the range of 50-200 nanometers (nm), the thickness may be in the range of 1-10 nm, and the length may be in the order of microns (μm). In one embodiment, the length may be between 5-10 μm, the width may be approximately 130 nm, and the thickness may be approximately 5 nm. The nanowire 304 may be a multi-mode/quasi-1D semiconductor wire due to it being strongly confined in the z-direction, by its thickness, so that only the lowest sub-band is occupied, while the weaker confinement in the y-direction, by its width, provides a few occupied sub-bands.
The nanowire 304 may be a semiconductor such as indium antimonide (InSb) or Indium arsenide (InAs) and may be epitaxially grown. The nanowire 304 may have a large spin-orbit interaction strength α and may have a large Lande g-factor (e.g., gInAs:10-25 and gInSb:20-70). Furthermore, the nanowire 304 may be of a material (e.g., InSb or InAs) that forms interfaces that are highly transparent for electrons, thereby allowing one to induce a large superconducting gap Δ.
With an in-plane magnetic field, {right arrow over (B)}=/B0{circumflex over (x)}, the superconductor 302 and the nanowire 304 have a strong Rashba coupling, and in the superconductor-semiconductor heterostructure of the topological qubit-wire 300, the Majorana mode may exist as a zero-energy (or low-energy) state.
An insulative layer 306 may interpose the superconductor 302 and the nanowire 304. The insulative layer 306 may be insulative with respect to electric field, magnetic field, etc. Quantum tunneling of electrons, between the superconductor 302 and the multi-mode nanowire 304, occurs through the insulative layer 306.
In some embodiments, the topological qubit-wire 300 may include a top array of gates 308 positioned proximal to a surface of the multi-mode nanowire 304. A second insulative layer 310 may interpose the top array of gates 308 and the nanowire 304. The array of gates 308 may selectively provide an electric field to the nanowire 304 to induce changes to the chemical potential of the nanowire 304, and thereby change portions of the nanowire 304 between topological phase (i.e., having Majorana modes) and non-topological phase (i.e., having no Majorana modes).
Illustrative Non-Abelian Quasiparticle State Teleporter
The non-Abelian quasiparticle state teleporter 400 may include a first and a second topological qubit-wire 402 and 404, respectively, and a tunable quasiparticle interactor 406.
The topological qubit-wire 402 has an end 408 that is proximal to an end 410 of the topological qubit-wire 404. The ends 408 and 410 are proximal to, or within a zone of coverage of, the tunable quasiparticle interactor 406. The tunable quasiparticle interactor 406 may include one or more gates and/or one or more magnetic field sources and/or other components that influence the topological behavior of the topological qubit wires 402 and 404 at or near the ends 408 and 410. The tunable quasiparticle interactor 406 may influence the topological behavior of the topological qubit wires 402 and 404 at or near the ends 408 and 410 adiabatically.
The quasiparticle interactor 406 may alter, in the topological qubit wires 402 and 404 at or near the ends 408 and 410, one or more of: local-chemical potential; local-Zeeman splitting; local-superconductor energy gap; and local-magnetic fields. The quasiparticle interactor 406 may also include components such as interferometers that may drive a pair of quasiparticles into a desired fusion channel.
For example, the topological qubit-wire 402 may have a longitudinal length aligned in the x-direction topological, and the qubit-wire 404 may have a longitudinal length aligned in the y-direction. A magnetic field, B1, 412 may be applied to the topological qubit-wire 402 along its longitudinal axis, and a magnetic field, B2, 414 may be applied to the topological qubit-wire 404 along its longitudinal axis. The magnetic field 412 (414) may produce Zeeman splitting of electrons in the respective superconductors 208 of the topological qubit-wires 402 (404), and Zeeman splitting may be a controllable parameter for inducing quasiparticles, such as non-Abelian quasiparticles, in the topological qubit-wire 402 (404). The tunable quasiparticle interactor 406 may provide a magnetic field, B3, 416 to ends 408 and 410. The magnetic field, B3, 416 may influence the topological behavior of the topological qubit wires 402 and 404 at or near the ends 408 and 410.
The topological qubit-wire 404 has a pair of a non-Abelian quasiparticles a2 424 and a3 426, which may be initially entangled, or in a predetermine fusion channel, or otherwise have some interaction/pairing. The quasiparticle interactor 406 may have initialized the non-Abelian quasiparticles a2 424 and a3 426 into a desired interaction, desired phase, desired fusion channel, etc. In some instances, the non-Abelian quasiparticles a2 424 and a3 426 may be paired Majorana quasiparticles and may be in a trivial phase or trivial fusion channel.
The tunable quasiparticle interactor 406 cause an interaction 428 between the non-Abelian quasiparticles a1 418 and a2 424. The interaction 428 may be applied adiabatically. At some stage, the interaction 428 becomes strong enough to teleport the state information (φ) from non-Abelian quasiparticle a1 418 to non-Abelian quasiparticle a3 426. It is important to realize that the non-Abelian quasiparticle a1 418 has not been physically moved and that the non-Abelian quasiparticle a1 418 remains at the end 408 of the topological qubit-wire 402.
B: General Discussion of Anyonic Teleportation and Braiding Transformations via Tunable Interactions
This section includes subsections which describe: generating forced measurements using tunable interactions; anyonic teleportation; generating braiding transformations; Ising Anyons and Majorana Fermion Zero Modes; and Majorana Wires.
Generating Forced Measurements Using Tunable Interactions
This section demonstrates how adiabatic manipulation of interactions between anyons may be used to implement certain topological charge projection operators, such as those used for anyonic teleportation and MOTQC. This can be done by restricting one's attention to three non-Abelian anyons that carry charges a1, a2, and a3, respectively, and have definite collective topological charge c, which is non-Abelian. The internal fusion state space of these three anyons is νca
Consider a time-dependent Hamiltonian H(t) with the following properties:
In other words, the ground state subspace of H(t) corresponds to a one-dimensional subspace of νca
It is now easy to apply the adiabatic theorem to determine the result of (unitary) time evolution on the ground state subspace. The adiabatic theorem states that if the system is in an energy eigenstate and it goes through an adiabatic process which does not close the gap between the corresponding instantaneous energy eigenvalue and the rest of the Hamiltonian's spectrum, then the system will remain in the subspace corresponding to this instantaneous energy eigenvalue. Since the Hamiltonian only acts nontrivially on anyons a1, a2, and a3, and a ground state will stay in the instantaneous ground state subspace, the resulting ground state evolution operator U0(t) [i.e., the restriction of the time evolution operator U(t) to the ground state subspace] at time t=τ must be
where the factor [Fca
Thus, it is clear that applying the operator U0(τ) to states in the t=0 ground state subspace has the same effect, up to an unimportant overall phase, as does applying the projection operator b
It is always possible to write a Hamiltonian H(t) that satisfies the enumerated properties 1-3, since one can write a projector 0(t) onto a one-dimensional subspace of νca
However, it is worth considering Hamiltonians that are physically more natural and amenable to experimental implementation. A simple and natural suggestion is to use the linear interpolation
This Hamiltonian automatically satisfies properties 1 and 2. However, it is complicated to determine whether it also satisfies property 3 for general pairwise interactions V(12) and V(23) (unless νca
V(jk)=εjk[1−2b
with εjk>0, property 3 will be satisfied iff [Fca
Anyonic Teleportation
For anyonic teleportation, one considers an anyonic state Ψ partially encoded in anyon a1 and an ancillary pair of anyons a2 and a3, which serve as the entanglement resource. The ancillary anyons are initially in a state with definite fusion channel b23 (which must be linked to other anyons, which is denoted , if b23≠I, where I is the trivial (or vacuum) fusion channel. (When two Ising anyons fuse, the result can be either the trivial state (I) or another quasiparticle excitation (ψ), as indicated by the fusion rule: σ×σ=I+ψ.) The combined initial state is written diagrammatically as
where the boxes are used to indicate the encoding details of the states, including other anyons (denoted as “ . . . ”) that comprise them.
To teleport the state information encoded in anyon a1 to anyon a3, one applies a projector b
where eiα and eiβ are unimportant phases (that are straightforward to compute) and f=
Referring to
Anyonic Braiding Transformations
Referring to
The collective topological charge projectors of pairs of anyons a2 706 and a3 708, a1702 and a2 706, and a2 706 and a4 704 are shown in
The resulting operator is obtained by taking the product of projectors (and dividing by a normalization factor)
where C is a constant that gives the proper normalization.
Referring to
It is useful (and often natural), though not necessary, to also have b23=b′23, otherwise there will be an Abelian charge line f=b23×
X={circumflex over (X)}(14)b
where the operator on anyons a1 and a4 is
where g=b12×
It should be clear that {circumflex over (X)}(14) is a modified braiding transformation, with the precise modification depending on aj, b12, and b24. Furthermore, if b12=b24, then g=0 and {circumflex over (X)}(14)=eiφ″Ra
Ising Anyons and Majorana Fermion Zero Modes
In this section, the above results are discussed in more detail for Ising anyons, because they are an especially physically relevant example. Ising-type anyons occur as quasiparticles in a number of quantum Hall states that are strong candidates for describing experimentally observed quantum Hall plateaus in the second Landau level, most notably for the
plateau, which has experimental evidence favoring a non-Abelian state. Ising anyons also describe the Majorana fermion zero modes, which exist in vortex cores of two-dimensional (2D) chiral p-wave superfluids and superconductors, at the ends of Majorana nanowires (one-dimensional spinless, p-wave superconductors), and quasiparticles in various proposed superconductor heterostructures. (Since there are always interactions that may lead to energy splitting, it is more accurate to call these “Majorana ε modes” where ε goes to zero as ε=O(e−L/ξ) for separations L and correlation length ξ.) Recently, there have been several experimental efforts to produce Majorana nanowires.
The Ising anyon model is described by:
where e, fε{I, ψ}, and only the non-trivial F-symbols and R-symbols are listed. (F-symbols and R-symbols not listed are equal to 1 if their vertices are permitted by the fusion algebra, and equal to 0 if they are not permitted.) The topological charge ψ corresponds to a fermion, while σ corresponds to a non-Abelian anyon. In Majorana fermion systems, the zero modes correspond to the σ anyons. In this way, the fusion rule σ×σ=I+ψ indicates that a pair of zero modes combines to a fermion mode, which can either be unoccupied or occupied, corresponding to the I or ψ fusion channel, respectively. The braiding operator for exchanging Majorana zero modes is given by the braiding of the σ Ising anyons, up to an overall phase ambiguity.
The braiding transformations of Ising anyons are not, by themselves, computationally universal, as they only generate a subset of the Clifford gates. However, they nonetheless provide a topologically protected gate set that is very useful for quantum information processing and error correction.
For anyonic teleportation, one considers the case where a1=a2=a3=σ. Then, b12, b23, and f=
For the (modified) braiding transformation generated from measurements or forced measurements, one considers the case when a1=a2=a3=a4=σ. Then, b12, b23, b24, and g=b12×
{circumflex over (X)}(14)=eiφRσσ (13)
is equal to the braiding exchange of the two σ anyons in a counterclockwise fashion (apart from an unimportant overall phase eiφ). When g=ψ, the operator becomes
{circumflex over (X)}(14)=eiφ′Rσσ−1, (14)
which is equal to the braiding exchange of the two σ anyons in a clockwise fashion (apart from a different unimportant overall phase eiφ′). The modification due to g=ψ effectively reverses the chirality of the braiding exchange.
Majorana Wires
It is useful and interesting to consider the results presented above in the context of Majorana nanowires. In particular, in the discretized model of Majorana nanowires, the translocation and exchange of the Majorana zero modes localized at the ends of wires can be understood as applications of anyonic teleportation and measurement-generated braiding transformation.
Kitaev's N-site fermionic chain model, for a spinless, p-wave superconducting wire is given by the Hamiltonian
where μ is the chemical potential, w is the hopping amplitude, Δ=|Δ|eiθ is the induced superconducting gap, and the jth site has (spinless) fermionic annihilation and creation operators, cj and cj†, respectively. This Hamiltonian exhibits two gapped phases (assuming the chain is long, i.e., N>>1):
(a) The trivial phase with a unique ground state occurs for 2|w|<μ.
(b) The non-trivial phase with twofold-degenerate ground states and zero modes localized at the endpoints occurs for 2|w|>μ and Δ≠0.
A powerful way of understanding this model comes from rewriting the fermionic operator cj of each site in terms of two Majorana operators.
In this way, the two gapped phases can be qualitatively understood by considering the following special cases inside each phase:
(a) μ<0 and w=Δ=0, for which the Hamiltonian becomes
(b) μ=0 and w=|Δ|>0, for which the Hamiltonian becomes
Hb=wΣj=1N-1iγ2jγ2j+1. (19)
Any pair of Majorana operators γj and γk can be written as a fermionic operator
in which case iγjγk=2{tilde over (c)}†{tilde over (c)}−1. Thus, the eigenvalue−1 of iγjγk corresponds to an unoccupied fermionic state, while the +1 eigenvalue corresponds to an occupied fermionic state. In Ha, each Majorana operator is paired with the other Majorana operator on the same site, such that the fermionic state at each site is unoccupied in the ground state. In Hb, each Majorana operator is paired with a Majorana operator in an adjacent site (such that their corresponding fermionic state is unoccupied in the ground states), except for γi and γ2N, which are unpaired (i.e., they do not occur in the expression for Hb). These unpaired Majorana operators result in zero modes, which give rise to a twofold degeneracy of ground states corresponding to iγ1γ2N=±1.
The pairings exhibited for these two special cases are characteristic of their corresponding phases, as shown in
To be concrete, consider the Hamiltonian H(t), which acts as Hb on sites 1, . . . , N and as Ha on sites N+2, N+3, . . . , for all t, while its time-dependent action on the Majorana operators γ2N, γ2N+1 and γ2N+2 (associated with sites N and N+1) is given by
for 0≦t≦τ. This locally takes the Hamiltonian from the form Ha at t=0 to Hb at t=τ on site N+1, extending the length of the (b) phase region and moving the zero mode from site N (associated with γ2N) to site N+1 (associated with γ2N÷2). It should be clear that this has exactly the form of time-dependent Hamiltonians satisfying properties 1-3 previously described. In particular, using the mapping between Ising anyons and Majorana fermion zero modes previously explained, one can replace the Majorana operators γj with σ Ising anyons. The unoccupied fermionic state of a pair of Majorana operators corresponds to a pair of σ anyons fusing into the I channel and the occupied fermionic state corresponds to them fusing into the ψ channel. The pairwise interaction iγjγk maps to the interaction V(jk)=1−2ΠI(jk) of Ising anyons, which energetically favors the bjk=I fusion channel. Thus, one can view this operation, which extends the Majorana wire and moves the zero mode from site N to site N+1, as an anyonic teleportation of the anyonic state information encoded in anyon 2N to anyon 2N+2. The “ancillary anyons” in this case are drawn from and absorbed into the bulk of the wires. The relation to anyonic teleportation can be seen clearly by comparing the discretized model in
At 1002, the pair of ancillary quasiparticles is initialized. As shown in
At 1004, state information φ1 is teleported from non-Abelian quasiparticle a1 1102 to quasiparticle a3 1108. The state information φ1 is teleported by adiabatically inducing interaction 1112 between non-Abelian quasiparticle a1 1102 and quasiparticle a2 1106. (See,
At 1006, state information φ2 is teleported from non-Abelian quasiparticle a4 1104 to non-Abelian quasiparticle a1 1102. The state information φ2 is teleported by adiabatically inducing interaction 1114 between non-Abelian quasiparticle a4 1104 and quasiparticle a2 1106. (See,
At 1008, state information φ1 is teleported from quasiparticle a3 1108 to non-Abelian quasiparticle a4 1104. The state information φ1 is teleported by adiabatically inducing interaction 1116 between quasiparticles a2 1106 and a3 1108. (See,
At 1010, the modification of the exchange transformation, which is introduced by way of the topological charge projectors applied in the teleportations, is accounted for. In some embodiments, the modification may be removed before either one or both of the “computational non-Abelian quasiparticles” interact with other quasiparticle and/or before a measurement of the anyonic state of the “computational non-Abelian quasiparticles.” In some embodiments, the modification may be removed by an interaction, measurement, projection operator, etc. In some embodiments, the modification may be accounted for during the lifetime of either one of the “computational non-Abelian quasiparticles” and may be accounted for, if still present, at a time of measurement of a state of either one or both of the “computational non-Abelian quasiparticles.”
This disclosure may be applied to n-Parafendleyon wires. These can be thought of as generalizations of Majorana wires for which the zero modes localized at the endpoints possess 2n Abelian fusion channels, rather than two. The above results similarly explain the possibility of realizing different transformations when exchanging the zero modes (though in the general case, it is not simply the difference between counterclockwise and clockwise braiding chiralities).
Although the techniques have been described in language specific to structural features and/or methodological acts, it is to be understood that the appended claims are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing such techniques.
Number | Name | Date | Kind |
---|---|---|---|
8209279 | Freedman et al. | Jun 2012 | B2 |
20120112168 | Bonderson | May 2012 | A1 |
20130005580 | Bunyk et al. | Jan 2013 | A1 |
Entry |
---|
“Measurement-only topological quantum computation via anyonic interferometry”, P. Bonderson, M. Freedman, C. Nayak, Annals of Physics 324, 2009 pp. 787-826. |
Volovik, G.E., “Monopole, Half-Quantum Vortices and Nexus in Chiral Superfluids and Superconductors”, In Journal of Experimental and Theoretical Physics Letters, vol. 70, Issue 12, Dec. 25, 1999, 4 pages. |
Willett, et al., “Magnetic Field Induced Resistance Properties at Filling Factor 5/2 Consistent with Non-Abelian e/4 Quasiparticles in Multiple Sized Interferometers”, retrieved from eprint of arXiv:1204.1993, Apr. 2012, 18 pages. |
Willett, et al., “Measurement of Filling Factor 5/2 Quasiparticle Interference: Observation of e/4 and e/2 Period Oscillations”, In Proceeding of the National Academy Sciences, vol. 106, Issue 22, Jun. 2, 2009, 26 pages. |
Willett, et al., “Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect”, In Journal of Physical Review Letter, vol. 59, Issue 15, Oct. 12, 1987, 4 pages. |
Xia, et al., “Electron Correlation in the Second Landau Level; A Competition between Many, Nearly Degenerate Quantum Phases”, In Journal of Physical Review Letter, vol. 93, Issue 17, Oct. 22, 2004, 5 pages. |
Goldin et al., “Comments on General Theory for Quantum Statistics in Two Dimensions”, Physical Review Letters, Feb. 11, 1985, 54(6), pp. 603. |
Alicea, Jason, “Majorana Fermions in a Tunable Semiconductor Device”, In Journal of Physical Review B, vol. 81, Issue 12, Mar. 15, 2010, 10 pages. |
Alicea, et al., “Non-Abelian Statistics and Topological Quantum Information Processing in 1D Wire Networks”, In Journal of Nature Physics, vol. 7, Issue 5, Feb. 13, 2011, 23 pages. |
C, et al., “Anyonic Braiding in Optical Lattices”, Abstract, In Proceedings of National Academy of Sciences of the United States of America, vol. 105, Issue 15, Apr. 15, 2008, 1 page. |
“Anyonic Quantum Computing”, Retrieved on: Mar. 8, 2013, Available at: http://zimp.zju.edu.cn/˜xinwan/topo06/pdf/topo06—wang2.pdf, 32 pgs. |
Bonderson, et al., “Measurement-Only Topological Quantum Computation via Anyonic Interferometry”, In Journal of Annals of Physics, vol. 324, Issue 4, Apr. 2009, 57 pages. |
Bonderson, et al., “A Blueprint for a Topologically Fault-tolerant Quantum Computer”, In Proceedings of arXiv Preprint arXiv:1003.2856, Mar. 15, 2010, 5 pages. |
Bonderson, et al., “Competing Topological Orders in the v= 12/5 Quantum Hall State”, In Journal of Physical Review Letter, vol. 108, Issue 3, Jan. 20, 2012, 5 pages. |
Bonderson, et al., “Coulomb Blockade Doppelgangers in Quantum Hall States”, In Proceedings of Physical Review B, vol. 81, Issue 16, Apr. 7, 2010, 12 pages. |
Bonderson, et al., “Fractional Quantum Hall Hierarchy and the Second Landau Level”, In Proceedings of Physical Review B, vol. 78, Issue 12, Article No. 125323, Sep. 15, 2008, 10 pages. |
Bonderson, et al., “Interferometry of Non-Abelian Anyons”, In Journal of Annals of Physics, vol. 323, Issue 11, Nov. 2008, 62 pages. |
Bonderson, Parsa, “Measurement-Only Topological Quantum Computation via Tunable Interactions”, In Journal of Physical Review B, vol. 87, Jan. 11, 2013, 10 pages. |
Bonderson, et al., “Measurement-Only Topological Quantum Computation”, In Journal of Physical Review Letter, vol. 101, Jun. 30, 2008, 5 pages. |
Bonderson, Parsa, “Non-Abelian Anyons and Interferometry”, In Ph.D Thesis Submitted at California Institute of Technology, May 23, 2007, 138 pages. |
Bonderson, et al., “Plasma Analogy and Non-Abelian Statistics for Ising-type Quantum Hall States”, In Proceedings of Physical Review B, vol. 83, Feb. 7, 2011, 68 pages. |
Bonderson, Parsa, “Splitting the Topological Degeneracy of non-Abelian Anyons”, In Journal of Physical Review Letter, vol. 103, Sep. 9, 2009, 5 pages. |
Bravyi, et al., “Universal Quantum Computation with Ideal Clifford Gates and Noisy Ancillas”, In Journal of Physical Review A, vol. 71, Feb. 22, 2005, 14 pages. |
Burrello, et al., “Braiding of Non-Abelian Anyons Using Pairwise Interactions”, In Journal of Physical Review A, vol. 87, Issue 2, Feb. 27, 2013, 8 pages. |
Cheng, Meng, “Superconducting Proximity Effect on the Edge of Fractional Topological Insulators”, In Journal of Physical Review B, vol. 86, Nov. 16, 2012, 7 pages. |
Clarke, et al., “Exotic Non-Abelian Anyons from Conventional Fractional Quantum Hall States”, In Journal of Nature Communication, vol. 4, Jan. 8, 2013, 12 pages. |
Das, et al., “Evidence of Majorana Fermions in an Al—InAs Nanowire Topological Superconductor”, In Proceedings of arXiv Preprint arXiv:1205.7073, Jul. 28, 2012, 49 pages. |
Deng, et al., “Observation of Majorana Fermions in a Nb—InSb Nanowire-Nb Hybrid Quantum Device”, In Proceedings of eprint of arXiv:1204.4130, Apr. 2012, 10 pages. |
Eisenstein, et al., “Insulating and Fractional Quantum Hall States in the First Excited Landau Level”, In Journal of Physical Review Letter, vol. 88, Issue 7, Feb. 18, 2002, 4 pages. |
Fendley, Paul, “Parafermionic Edge Zero Modes in Z n Invariant Spin Chains”, In Journal of Statistical Mechanics: Theory and Experiment, Oct. 2012, 22 pages. |
Fredenhagen, et al., “Superselection Sectors with Braid Statistics and Exchange Algebras”, In Journal of Communications in Mathematical Physics, vol. 125, Issue 2, Mar. 1989, 26 pages. |
Freedman, et al., “Towards Universal Topological Quantum Computation in the v= 5/2 Fractional Quantum Hall State”, In Journal of Physical Review B, vol. 73, Issue 24, Jun. 2006, 23 pages. |
Frohlich, J., “Braid Statistics in Local Quantum Theory”, In Journal of Reviews in Mathematical Physics, vol. 2, Issue 3, Oct. 12, 1990, 103 pages. |
Fu, et al., “Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator”, In Journal of Physical Review Letter, vol. 100, Mar. 6, 2008, 4 pages. |
Heck, et al., “Coulomb-Assisted Braiding of Majorana Fermions in a Josephson Junction Array”, In New Journal of Physics, vol. 14, Mar. 28, 2012, 15 pages. |
Kitaev, A. Yu., “Fault-Tolerant Quantum Computation by Anyons”, In Journal of Annals Physics, vol. 303, Issue 1, Jul. 9, 1997, 27 pages. |
Kitaev, A. Yu., “Fault-tolerant Quantum Computation by Anyons”, In Journal of Annals of Physics, vol. 303, Issue 1, Jan. 2003, 29 pages. |
Kitaev, Alexei Yu., “Unpaired Majorana Fermions in Quantum Wires”, In Journal of Physics-Uspekhi, vol. 44, Issue 131, Oct. 2001, 7 pages. |
Kumar, et al., “Nonconventional Odd Denominator Fractional Quantum Hall States in the Second Landau Level”, In Journal of Physical Review Letter, vol. 105, Issue 24, Dec. 10, 2010, 4 pages. |
Lee, et al., “Particle-Hole Symmetry and the v= 5/2 Quantum Hall State”, In Journal of Physical Review Letter, vol. 99, Issue 23, Dec. 7, 2007, 5 pages. |
Leinaas, J. M., “On the Theory of Identical Particles”, In Journal of II Nuovo Cimento B, vol. 37, Issue 1, Jan. 1, 1977, 25 pages. |
Levin, et al., “Particle-Hole Symmetry and the Pfaffian State”, In Journal of Physical Review Letter, vol. 99, Issue 23, Dec. 6, 2007, 5 pages. |
Lindner, et al., “Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States”, In Proceedings of Physical Review X, vol. 2, Issue 4, Article No. 041002, Oct. 11, 2012, 21 pages. |
Lutchyn, et al., “Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures”, In Journal of Physical Review Letter, vol. 105, Issue 7, Aug. 13, 2010, 5 pages. |
Moore, et al., “Nonabelions in the Fractional Quantum Hall Effect”, In Journal of Nuclear Physics B, vol. 360, Issue 2-3, Aug. 19, 1991, 35 pages. |
Mourik, et al., “Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices”, In Journal of Science, vol. 336, Issue 6084, Apr. 5, 2012, 28 pages. |
Nayak, et al., “Non-Abelian Anyons and Topological Quantum Computation”, In Journal of Reviews of Modern Physics, vol. 80, Issue 3, Sep. 12, 2008, 73 pages. |
Oreg, et al., “Helical Liquids and Majorana Bound States in Quantum Wires”, In Journal of Physical Review Letter, vol. 105, Issue 17, Oct. 20, 2010, 5 pages. |
Pachos, et al., “Focus on Topological Quantum Computation”, In the Proceedings of New Journal of Physics, Mar. 8, 2013, 8 pages. |
Pachos, Jiannis K., “Introduction to Topological Quantum Computation”, Retrieved on: Mar. 8, 2013, Available at: http://www1.quantum.leeds.ac.uk/˜phyjkp/index—files/JiannisPachosLecture.pdf, 41 pgs. |
Pan, et al., “Exact Quantization of Even-Denominator Fractional Quantum Hall State at v= 5/2 Landau Level Filling Factor”, In Journal of Physical Review Letter, vol. 83, Issue 17, Oct. 25, 1999, 5 pages. |
Radu, et al., “Quasiparticle Tunneling in the Fractional Quantum Hall State at v= 5/2 ”, In Journal of Science, vol. 320, Issue 5878, May 16, 2008, 6 pages. |
Read, et al., “Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries, and the Fractional Quantum Hall Effect”, In Journal of Physical Review B, vol. 61, Issue 15, Apr. 2000, 35 pages. |
Rokhinson, et al., “Observation of the Fractional a.c. Josephson Effect and the Signature of Majorana Particles”, In Journal of Nature Physics, vol. 8, Issue 11, Aug. 23, 2012, 17 pages. |
Sau, et al., “A Generic New Platform for Topological Quantum Computation using Semiconductor Heterostructures”, In Journal of Physical Review Letter, vol. 104, Issue 4, Jan. 27, 2010, 4 pages. |
Sau, et al., “Controlling Non-Abelian Statistics of Majorana Fermions in Semiconductor Nanowires”, In Journal of Physical Review B, vol. 84, Issue 9, Sep. 2011, 8 pages. |
“Synthetic Quantum Systems & Quantum Simulation”, Retrieved on: Mar. 8, 2013, Available at: http://equs.org/sqsqs, 3 pgs. |
Number | Date | Country | |
---|---|---|---|
20140279822 A1 | Sep 2014 | US |