The present technology is in the field of system design and, more specifically, related to topology synthesis to generate a network-on-chip (NoC) description.
Multiprocessor systems have been implemented in systems-on-chips (SoCs) that communicate through network-on-chips (NoCs). The SoCs include instances of master (initiators) intellectual properties (IPs) and slave (targets) IPs. Transactions, in the form of packets, are sent from a master to one or more slaves using industry-standard protocols. The master, connected to the NoC, sends a request transaction to a slave, using an address to select the slave. The NoC decodes the address and transports the request from the master to the slave. The slave handles the transaction and sends a response transaction, which is transported back by the NoC to the master.
For a given set of performance requirements, such as connectivity and latency between source and destination, frequency of the various elements, maximum area available for the NoC logic, minimum throughput between sources and destinations, position on the floorplan of elements attached to the NoC, it is a complex task to create an optimal NoC that fulfills all the requirements with a minimum amount of logic and wires. This is typically the job of the chip architect or chip designer to create this optimal NoC, and this is a difficult and time-consuming task. In addition to this being a difficult task, the design of the NoC is revised every time one of the requirement changes, such as modifications of the chip floorplan or modification of the expected performance. As a result, this task needs to be redone frequently over the design time of the chip. This process is time consuming, which results in production delays. Therefore, what is needed is system and method to efficiently generate a NoC from a set of constraints, which are listed as requirements, and a set of inputs. The system needs to produce the NoC with all its elements placed on a floorplan of a chip.
In accordance with various embodiments and aspects of the invention, systems and methods are disclosed that generate a network-on-chip (NoC) using a set of constraints and a set of step with inputs to produce or generate the NoC with all its elements. The elements of the NoC are placed on a floorplan of a chip. The advantage of the invention is simplification of design process and the work of the chip architect or designer.
The following describes various examples of the present technology that illustrate various aspects and embodiments of the invention. Generally, examples can use the described aspects in any combination. All statements herein reciting principles, aspects, and embodiments as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
It is noted that, as used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Reference throughout this specification to “one aspect,” “an aspect,” “certain aspects,” “various aspects,” or similar language means that a particular aspect, feature, structure, or characteristic described in connection with any embodiment is included in at least one embodiment of the invention.
Appearances of the phrases “in one embodiment,” “in at least one embodiment,” “in an embodiment,” “in certain embodiments,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment or similar embodiments. Furthermore, aspects and embodiments of the invention described herein are merely exemplary, and should not be construed as limiting of the scope or spirit of the invention as appreciated by those of ordinary skill in the art. The disclosed invention is effectively made or used in any embodiment that includes any novel aspect described herein. All statements herein reciting principles, aspects, and embodiments of the invention are intended to encompass both structural and functional equivalents thereof. It is intended that such equivalents include both currently known equivalents and equivalents developed in the future.
As used herein, a “master” and a “initiator” refer to similar intellectual property (IP) modules or units and the terms are used interchangeably within the scope and embodiments of the invention. As used herein, a “slave” and a “target” refer to similar IP modules or units and the terms are used interchangeably within the scope and embodiments of the invention. As used herein, a transaction may be a request transaction or a response transaction. Examples of request transactions include write request and read request.
As used herein, a node is defined as a distribution point or a communication endpoint that is capable of creating, receiving, and/or transmitting information over a communication path or channel. A node may refer to any one of the following: switches, splitters, mergers, buffers, and adapters. As used herein, splitters and mergers are switches; not all switches are splitters or mergers. As used herein and in accordance with the various aspects and embodiments of the invention, the term “splitter” describes a switch that has a single ingress port and multiple egress ports. As used herein and in accordance with the various aspects and embodiments of the invention, the term “merger” describes a switch that has a single egress port and multiple ingress ports.
Referring now to
Referring now to
Referring now to
Referring now to
Referring again to
In accordance with the various aspects of the invention, input 251 includes input about the global consolidation roadmap. The global consolidation roadmap includes a consolidation model that captures the global physical view of the connectivity of the floorplan's free space, as well as the connectivity across/between the initiators and targets. The global consolidation roadmap is modeled by a graph of physical nodes and canonical segments that are used to position the nodes. (splitters, mergers, switches, adapters) of the network under construction. The global consolidation roadmap is used to fasten computation. In accordance with various aspects of the invention, the global consolidation roadmap is persistent, which means that it is data the system exports and re-consumes in incremental synthesis and subsequent runs.
In accordance some aspects of the invention, input 259 incudes information about edge clustering. Edge clustering aims to minimize resources and enhancing performance goals through proper algorithms and techniques. In accordance with some aspects of the invention, edge clustering is applied in conjunction and in cooperation with input 260, node clustering. Edge clustering and node clustering can be used in combination by mixing, by being applied concurrently, or by being applied in sequence. The advantage and goal is to expand the spectrum of synthesis and span a larger solution space for the network.
In accordance with various aspects of the invention, input 262 includes information about re-structuring. Re-structuring includes a variety of transformations and capabilities. In accordance with some aspects of the invention, the transformations are logical in that there is a change in structure of the network. In accordance with some aspects of the invention, the transformation are physical because there is a physical change in the network, such as moving a node to a new location. Other examples of re-structing include: breaking a node into smaller nodes; reparenting between nodes; network sub-part duplication to avoid deadlocks and to deal with congestion; and physically re-routing links to avoid congestion areas or to meet timing constraints.
Referring now to
In accordance with the various aspects of the invention, another constraint includes extension of the clock domain and power domain 212 can also be provided. The domain 212 includes areas of the chip where logic belonging to a particular domain is allowed to be placed.
In accordance with the various aspects of the invention, capabilities of the logic library, which will be used to implement the NoC, are provided. The information includes the size of a reference logic gate, and the time it takes for a signal to cover a 1 mm distance.
Referring again to
In accordance with the various aspects of the invention, initiators and targets are communicatively connected to the NoC. An initiator is a unit that send requests, typically read and write commands. A target is a unit that serves or responds to requests, typically read and writes commands. Each initiator is attached to or connected to the NoC through a NIU. The NIU that is attached to an initiator is called an Initiator Network Interface Unit (INIU). Further, each target is attached to the NoC through an NIU. The NIU that is attached to a target is called a Target Network Interface Unit (TNIU). The primary functionality of the NoC is to carry each request from an initiator to the desired destination target, and if the request demands or needs a response, then the NoC carries each target's response to the corresponding requesting initiator. Initiators and targets have many different parameters that characterize them. In accordance with the various aspects of the invention, for each initiator and target, the clock domain and power domain they belong to are defined. The width of the data bus they use to send write and receive reads payloads is a number of bits. In accordance with the various aspects of the invention, the width of the data bus for the connection (the communication path to/from a target) used to send write requests and receive write responses are also defined. Furthermore, the clock and power domain definition are a reference to the previously described clock and power domains existing in the SoC, as described herein.
Continuing with
In accordance with the various aspects of the invention, initiators are not required to be able to send requests to all targets or slaves that are connected to the NoC. The precise definition of the target that can receive requests from an initiator is outline or set forth in the connectivity table, such as table 400. The connectivity and traffic class labelling information can be represented as a matrix. Each master has a row and each slave has a column. If a master must be able to send traffic to a slave, a traffic class label must be present at the intersection between the master row and the slave column. If no label is present at an intersection, then the tool does not need connectivity between that master and that slave. For example, master 1 (M1) is connectively communicating with slave 1 (S1) using a defined label 1 (L1) while M1 does not communicate with S2 and hence there is no label in the intersection of M1 and S2. In accordance with the various aspects of the invention, the actual format used to represent connectivity can be different, as long as each pair of master-slave combination has a precise definition of its traffic class, or no classification label if there is no connection.
Referring now to
A scenario can be represented as 2 matrices, one defining read throughputs and one defining write throughputs. In accordance with the various aspects of the invention, read throughput requirements will be used to size the response network, which handles data returning from slaves back to master. Write throughput requirements will be used to size the request network, which is data going from master to slave, in accordance with the various aspects of the invention. An example, in accordance with the various aspects of the invention, of the throughput requirements for the various scenarios is shown in table 500. The actual format used to represent a scenario can be different, as long as each pair of (master, slave) has a precise definition of its minimum required throughput for read and for write. In table 500, read transaction from M1 to S1 has a minimum performance throughput of 100 MB/s. In table 500, a write transaction from M1 to S1 has a minimum throughput of 50 MB/s.
In accordance with some aspects of the invention, scenarios are not defined for the tool, in which case the tool optimizes the NoC synthesis process for physical cost, such as lowest gate cost and/or lowest wire cost.
Referring now to
In accordance with various embodiments and aspects of the invention, there are three (3) traffic classes. In accordance with embodiment: traffic class #1 is Best Effort (BE), traffic class #2 is Low Latency (LL), and traffic class #2 is Bandwidth Controlled (BW). The data width of each switch, and the clock domain it belongs to, is computed using the data width of each attached interface, and their clock domain, as inputs to the tool. In accordance with the various aspects of the invention, each step that transforms the network, which is part of the NoC, also perform the computation of the data width and the clock domain of the newly created network elements.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In accordance with the various aspects of the invention, the tool transforms the network in order to reduce the number of wires used between switches achievable, while keeping the performances as defined in the scenarios, which are a set of required minimum throughput between master and slave. In accordance with the various aspects of the invention switches are clustered for performance aware switching, mergers and splitters that have been distributed on the roadmaps are treated like ordinary switches.
In accordance with an aspect of the invention, the tool uses a process that is iterative and will merge switches under the condition that performances are still met, until no further switch merge can occur. The tool uses a process that is described as follows:
In accordance with various aspects of the invention, it is possible for the process to ensure the switches do not grow above a certain size (maximum number of ingress ports, maximum number of egress ports). If a combined switch is above the set threshold, then the merge is prevented.
Referring now the
Referring again to
Continuing with
In accordance with other aspects of the invention, extension of clock and power domains on the floorplan are provided and each element is tested to ensure it is located within the bounds of the specified clock and power domain. If the test fails, the element is moved until a suitable location is found where the test is passing. Once a suitable placement has been found for each element, a routing is done of each connection between element. The routing process will find a suitable path for the set of wires making the connections between elements. After routing is done, distance-spanning pipeline elements are inserted on the links if required, using the information provided regarding the capabilities of the technology, based on how long it takes for a signal to cover a 1 mm distance.
In accordance with some aspects and embodiments of the invention, the tool generates one or more computer files describing the generated NoC that includes:
In accordance with various aspects of the invention, the tool is used to generate metrics about the generated NoC, such as: histograms of wire length distribution, number of switches, histogram of switch by size.
In accordance with another aspect of the invention, the tool automatically inserts in the network various adapters and buffers. The tool inserts the adapters based on the adaptation required between two elements that have different data width, different clock and power domains. The tool inserts the buffers based on the scenarios and the detected rate mismatch.
In accordance with some aspects and embodiments, the tool can be used to ensure multiple iterations of the synthesis are done for incremental optimization of the NoC, which includes a situation when one constraint provided to the tool is information about the previous run.
After execution of the synthesis process by the software, the results are produced in a machine-readable form, such as computer files using a well-defined format to capture information. An example of such a format is XML, another example of such a format is JSON. The scope of the invention is not limited by the specific format.
Certain methods according to the various aspects of the invention may be performed by instructions that are stored upon a non-transitory computer readable medium. The non-transitory computer readable medium stores code including instructions that, if executed by one or more processors, would cause a system or computer to perform steps of the method described herein. The non-transitory computer readable medium includes: a rotating magnetic disk, a rotating optical disk, a flash random access memory (RAM) chip, and other mechanically moving or solid-state storage media. Any type of computer-readable medium is appropriate for storing code comprising instructions according to various example.
Certain examples have been described herein and it will be noted that different combinations of different components from different examples may be possible. Salient features are presented to better explain examples; however, it is clear that certain features may be added, modified and/or omitted without modifying the functional aspects of these examples as described.
Various examples are methods that use the behavior of either or a combination of machines. Method examples are complete wherever in the world most constituent steps occur. For example and in accordance with the various aspects and embodiments of the invention, IP elements or units include: processors (e.g., CPUs or GPUs), random-access memory (RAM—e.g., off-chip dynamic RAM or DRAM), a network interface for wired or wireless connections such as ethernet, WiFi, 3G, 4G long-term evolution (LTE), 5G, and other wireless interface standard radios. The IP may also include various I/O interface devices, as needed for different peripheral devices such as touch screen sensors, geolocation receivers, microphones, speakers, Bluetooth peripherals, and USB devices, such as keyboards and mice, among others. By executing instructions stored in RAM devices processors perform steps of methods as described herein.
Some examples are one or more non-transitory computer readable media arranged to store such instructions for methods described herein. Whatever machine holds non-transitory computer readable media comprising any of the necessary code may implement an example. Some examples may be implemented as: physical devices such as semiconductor chips; hardware description language representations of the logical or functional behavior of such devices; and one or more non-transitory computer readable media arranged to store such hardware description language representations. Descriptions herein reciting principles, aspects, and embodiments encompass both structural and functional equivalents thereof. Elements described herein as coupled have an effectual relationship realizable by a direct connection or indirectly with one or more other intervening elements.
Practitioners skilled in the art will recognize many modifications and variations. The modifications and variations include any relevant combination of the disclosed features. Descriptions herein reciting principles, aspects, and embodiments encompass both structural and functional equivalents thereof. Elements described herein as “coupled” or “communicatively coupled” have an effectual relationship realizable by a direct connection or indirect connection, which uses one or more other intervening elements. Embodiments described herein as “communicating” or “in communication with” another device, module, or elements include any form of communication or link and include an effectual relationship. For example, a communication link may be established using a wired connection, wireless protocols, near-filed protocols, or RFID.
To the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a similar manner to the term “comprising.”
The scope of the invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
This application is a continuation of U.S. Pat. No. 11,121,933 (U.S. application Ser. No. 16/728,335 filed on Dec. 27, 2019) entitled PHYSICALLY AWARE TOPOLOGY SYNTHESIS OF A NETWORK and issued on Sep. 14, 2021, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5485396 | Brasen et al. | Jan 1996 | A |
5541849 | Rostoker et al. | Jul 1996 | A |
5623420 | Yee et al. | Apr 1997 | A |
5638288 | Deeley | Jun 1997 | A |
5761078 | Fuller et al. | Jun 1998 | A |
5887670 | Tabata et al. | Mar 1999 | A |
5903886 | Heimlich et al. | May 1999 | A |
5983277 | Heile et al. | Nov 1999 | A |
6002857 | Ramachandran | Dec 1999 | A |
6134705 | Pedersen et al. | Oct 2000 | A |
6145117 | Eng | Nov 2000 | A |
6249902 | Igusa et al. | Jun 2001 | B1 |
6321363 | Huang et al. | Nov 2001 | B1 |
6360356 | Eng | Mar 2002 | B1 |
6378121 | Hiraga | Apr 2002 | B2 |
6421321 | Sakagawa et al. | Jul 2002 | B1 |
6437804 | Ibe et al. | Aug 2002 | B1 |
6449761 | Greidinger et al. | Sep 2002 | B1 |
6622225 | Kessler et al. | Sep 2003 | B1 |
6883455 | Maeda et al. | Apr 2005 | B2 |
6907591 | Teig et al. | Jun 2005 | B1 |
7096436 | Bednar et al. | Aug 2006 | B2 |
7398497 | Sato et al. | Jul 2008 | B2 |
7587687 | Watanabe et al. | Sep 2009 | B2 |
7788625 | Donlin et al. | Aug 2010 | B1 |
8042087 | Murali | Oct 2011 | B2 |
8302041 | Chan et al. | Oct 2012 | B1 |
8819611 | Philip et al. | Aug 2014 | B2 |
9184998 | Xue | Nov 2015 | B2 |
9262359 | Noice et al. | Feb 2016 | B1 |
9444702 | Raponi et al. | Sep 2016 | B1 |
9569574 | Khan et al. | Feb 2017 | B1 |
9792397 | Nagaraja | Oct 2017 | B1 |
9825779 | Ruymbeke et al. | Nov 2017 | B2 |
9940423 | de Lescure | Apr 2018 | B2 |
10068047 | Finn | Sep 2018 | B1 |
10282502 | BShara et al. | May 2019 | B1 |
10348563 | Rao et al. | Jul 2019 | B2 |
10460062 | Feld et al. | Oct 2019 | B2 |
10733350 | Prasad et al. | Aug 2020 | B1 |
10853545 | Nardi et al. | Dec 2020 | B1 |
10922471 | Baeckler et al. | Feb 2021 | B2 |
10990724 | Cherif | Apr 2021 | B1 |
11121933 | Cherif | Sep 2021 | B2 |
11281827 | Labib et al. | Mar 2022 | B1 |
11449655 | Cherif et al. | Sep 2022 | B2 |
11601357 | Cherif | Mar 2023 | B2 |
11657203 | Cherif | May 2023 | B2 |
11665776 | Cherif | May 2023 | B2 |
20030093765 | Lam et al. | May 2003 | A1 |
20040040007 | Harn | Feb 2004 | A1 |
20040230919 | Balasubramanian et al. | Nov 2004 | A1 |
20050073316 | Graham | Apr 2005 | A1 |
20050268258 | Decker | Dec 2005 | A1 |
20070156378 | McNamara | Jul 2007 | A1 |
20070157131 | Watanabe et al. | Jul 2007 | A1 |
20070174795 | Lavagno et al. | Jul 2007 | A1 |
20070186018 | Radulescu et al. | Aug 2007 | A1 |
20080046854 | Tang | Feb 2008 | A1 |
20080049753 | Heinze et al. | Feb 2008 | A1 |
20080279183 | Wiley et al. | Nov 2008 | A1 |
20080291826 | Licardie et al. | Nov 2008 | A1 |
20090031277 | Mcelvain et al. | Jan 2009 | A1 |
20090313592 | Murali et al. | Dec 2009 | A1 |
20100061352 | Fasolo et al. | Mar 2010 | A1 |
20100162189 | Lavagno et al. | Jun 2010 | A1 |
20100218146 | Platzker et al. | Aug 2010 | A1 |
20100274785 | Procopiuc et al. | Oct 2010 | A1 |
20110170406 | Krishnaswamy | Jul 2011 | A1 |
20120013509 | Wisherd et al. | Jan 2012 | A1 |
20120311512 | Michel et al. | Dec 2012 | A1 |
20130174113 | Lecler et al. | Jul 2013 | A1 |
20130208598 | Nakaya et al. | Aug 2013 | A1 |
20130258847 | Zhang et al. | Oct 2013 | A1 |
20130283226 | Ho et al. | Oct 2013 | A1 |
20140115218 | Philip et al. | Apr 2014 | A1 |
20140126572 | Hutton et al. | May 2014 | A1 |
20140153575 | Munoz | Jun 2014 | A1 |
20140156826 | Chang et al. | Jun 2014 | A1 |
20140160939 | Arad et al. | Jun 2014 | A1 |
20140169173 | Naouri et al. | Jun 2014 | A1 |
20140204735 | Kumar et al. | Jul 2014 | A1 |
20140211622 | Kumar et al. | Jul 2014 | A1 |
20140298281 | Varadarajan et al. | Oct 2014 | A1 |
20140321839 | Armstrong | Oct 2014 | A1 |
20150036536 | Kumar et al. | Feb 2015 | A1 |
20150106778 | Mangano et al. | Apr 2015 | A1 |
20150121319 | Hutton et al. | Apr 2015 | A1 |
20150178435 | Kumar | Jun 2015 | A1 |
20150254325 | Stringham | Sep 2015 | A1 |
20150341224 | Van et al. | Nov 2015 | A1 |
20150347641 | Gristede et al. | Dec 2015 | A1 |
20160103943 | Xia et al. | Apr 2016 | A1 |
20160275213 | Tomita | Sep 2016 | A1 |
20160321390 | Bozman et al. | Nov 2016 | A1 |
20170060204 | Gangwar et al. | Mar 2017 | A1 |
20170063734 | Kumar | Mar 2017 | A1 |
20170132350 | Janac | May 2017 | A1 |
20170177778 | Lescure | Jun 2017 | A1 |
20170193136 | Prasad et al. | Jul 2017 | A1 |
20170230253 | Chopra | Aug 2017 | A1 |
20180115487 | Thubert et al. | Apr 2018 | A1 |
20180144071 | Yu et al. | May 2018 | A1 |
20180227180 | Rao et al. | Aug 2018 | A1 |
20190012909 | Mintz | Jan 2019 | A1 |
20190073440 | Farbiz et al. | Mar 2019 | A1 |
20190205493 | Garibay et al. | Jul 2019 | A1 |
20190246989 | Genov et al. | Aug 2019 | A1 |
20190251227 | Fink | Aug 2019 | A1 |
20190260504 | Philip et al. | Aug 2019 | A1 |
20190363789 | Lee et al. | Nov 2019 | A1 |
20200092230 | Schultz et al. | Mar 2020 | A1 |
20200162335 | Chen et al. | May 2020 | A1 |
20200234582 | Mintz | Jul 2020 | A1 |
20200366607 | Kommula et al. | Nov 2020 | A1 |
20210203557 | Cherif et al. | Jul 2021 | A1 |
20210226887 | Mereddy | Jul 2021 | A1 |
20210320869 | Bourai et al. | Oct 2021 | A1 |
20210409284 | Cherif et al. | Dec 2021 | A1 |
20220294704 | Lescure et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
105187313 | May 2018 | CN |
109587081 | Apr 2019 | CN |
113051215 | Jun 2021 | CN |
113055219 | Jun 2021 | CN |
102015014851 | May 2016 | DE |
3842987 | Jun 2021 | EP |
4024262 | Jul 2022 | EP |
4057179 | Sep 2022 | EP |
Entry |
---|
James C. Tiernan. 1970. An efficient search algorithm to find the elementary circuits of a graph. Commun. ACM 13, 12 (Dec. 1970), 722-726. https://doi.org/10.1145/362814.362819. |
Francesco Robino: “A model-based design approach for heterogeneous NoC-based MPSoCs on FPGA”, Jul. 1, 2014 (Jul. 1, 2014), XP002806918, Retrieved from the Internet: URL: http://www.divaportal.org/smash/get/diva2:718518/FULLTEXT02.pdf [retrieved on Jun. 22, 2022]. |
U.S. Appl. No. 17/134,384, filed Dec. 26, 2020, Federico Angiolini. |
U.S. Appl. No. 17/665,578, Feb. 6, 2022, K. Charles Janac. |
“A distributed interleaving scheme for efficient access to wideIO dram memory”, Seiculescu Ciprian, Benini Luca, De Micheli Giovanni, CODES+ISSS'12 (Year: 2012). |
“Thread-Fair Memory Request Reordering”; Kun Fang, Nick Iliev, Ehsan Noohi, Suyu Zhang, and Zhichun Zhu; Dept. of ECE, Univeristy of Illinois at Chicago; JWAC-3 Jun. 9, 2012. |
19th Asia and South Pacific Design Automation Conterence Alberto Ghiribaldi, Herve Tatenguem Fankem, Federico Angiolini, Mikkel Stensgaard, Tobias Bjerregaard, Davide Bertozzi A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for Predictable NoC Design in Nanoscale Technologies. |
ACM ICCAD '06 Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salvatore Carta, Luca Benini, Giovanni De Micheli, Luigi Raffo Designing Application-Specific Networks on Chips with Floorplan Information p. 8, Figure 8. |
Annual IEEE International SoC Conference Proceedings Mohammad reza Kakoee, Federico Angiolin, Srinivasan Murali, Antonio Pullini, Ciprian Seiculescu, and Luca Benini A Floorplan-aware Interactive Tool Flow for NoC Design and Synthesis pp. 1, 2, 4 2009 Belfast, Northern Ireland, UK. |
K. R. Manik et al., “Methodology for Design of Optimum NOC Based on I PG,” 2017 Int'l Conference on Algorithms, Methodology, Model and Applications in Emerging Technologies (ICAMMAET), Chennai, India, IEEE, 6 pages. (Year: 2017). |
Luca Benini: “Application specific Noc design”, Design, Automation and Test in Europe, 2006, DATE '06 Mar. 6-10, 2006, [Munich, Germany; Proceedings] / [Sponsored By the European Design and Automation Association], IEEE, Piscataway, NJ, USA, Mar. 6, 2006 (Mar. 6, 2006), pp. 491-495, XP058393584, ISBN: 9783981080100. |
Anonymous: “Network on a chip—Wikipedia”, Jun. 15, 2021, https://en.wikipedia.org/w/index.php?title=Network_on_a_chip&oldid=1028654828. |
Haytham Elmiligi et al: “Networks-on-chip topology optimization subject to power, delay, and reliability constraints”, IEEE International Symposium on Circuits and Systems, May 30, 2010, pp. 2354-2357 DOI: 10.1109/ISCAS.2010.5537194. |
Jain R. et al: “Predicting system-level area and delay for pipelined and nonpipelined designs”, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 11, No. 8, Jan. 1, 1992, pp. 955-965, DOI: 10. 1109/43.149767. |
Jingye Xu et al: “Latch Based Interconnect Pipelining For High Speed Integrated Circuits”, Proceedings of the International Conference on Electro/Information Technology, May 1, 2006, pp. 295-300 DOI: 10.1109/EIT.2006.252152. |
Jun Minje et al: “Exploiting Implementation Diversity and Partial Connection of Routers in Application-Specific Network-on-Chip Topology Synthesis”, IEEE Transactions on Computers, IEEE, USA, vol. 63, No. 6, Jun. 1, 2014 (Jun. 1, 2014), pp. 1434-1445, XP011550397, ISSN: 0018-9340, DOI: 10.1109/TC.2012.294. |
Saponara S et al: “Design and coverage-driven verification of a novel network-interface IP macrocell for network-on-chip interconnects”, Microprocessors and Microsystems, vol. 35, No. 6 , pp. 579-592, XP028255708, ISSN: 0141-9331, DOI: 10.1016/J.MICPRO, 2011.06.005. |
Saponara Sergio et al: “Configurable network-on-chip router macrocells”, Microprocessors and Microsystems, IPC Business Press Ltd. London, GB, vol. 45, Apr. 29, 2016 (Apr. 29, 2016), pp. 141-150, XP029678799, ISSN: 0141-9331, DOI: 10.1016/J.MICPR0.2016.04.008. |
Song Z et al: “A NoC-Based High Performance Deadlock Avoidance Routing Algorithm”, Computer and Computational Sciences, 2008. IMSCCS '08. International Multisymposiums On, IEEE Piscataway, NJ, USA, Oct. 18, 2008, pp. 140-143, XP031411025, ISBN: 978-0-7695-3430-5. |
Anonymous: “Intel Hyperflex Architecture HighPerformance Design Handbook”, Oct. 4, 2021 (Oct. 4, 2021), pp. 1-147, XP093063924, Retrieved from the Internet: URL:https://cdrdv2.intel.com/vl/dl/getContent/667078?fileName=sI0_hp_hb-683353-667078.pdf. |
Ken Eguro et al: “Simultaneous Retiming and Placement for Pipelined Net lists”, Proceedings of the 16th International Symposium on Field-Programmable Custom Computing Machines, Apr. 14, 2008 (Apr. 14, 2008), pp. 139-148, XP031379339. |
Chaari Moomen Moomen Chaari@Infineon Com et al: “A model-based and simulation-assisted FMEDA approach for safety-relevant E/E systems”, Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, ACMPUB27, New York, NY, USA, Jun. 7, 2015 (Jun. 7, 2015), pp. 1-6, XP058511366, DOI: 10.1145/2744769.2747908 ISBN: 978-1-4503-3550-8. |
Mariani R et al: “Fault-Robust Microcontrollers for Automotive Applications”, On-Line Testing Symposium, 2006. IOLTS 2006. 12th IEEE International Como, Italy Jul. 10-12, 2006, Piscataway, NJ, USA, IEEE, Jul. 10, 2006 (Jul. 10, 2006), pp. 213-218, XP010928275, DOI: 10.1109/IOLTS.2006.38 ISBN: 978-0-7695-2620-I. |
Alessandro Pinto et al: “System level design paradigms”, ACM Transactions on Design Automation of Electronic Systems, ACM, New York, NY, US, vol. 11, No. 3, Jun. 7, 2004 (Jun. 7, 2004), pp. 537-563, XP058222500. |
Bo Huang et al: “Application-Specific Network-on-Chip synthesis with topology-aware floorplanning”, Integrated Circuits and Systems Design (SBCCI), 2012 25th Symposium On, IEEE, Aug. 30, 2012 (Aug. 30, 2012), pp. 1-6, XP032471227. |
Jean-Jacques Lecler et al: Application driven network-on-chip architecture exploration& refinement for a complex SoC, Design Automation for Embedded Systems, vol. 15 No. 2, Apr. 7, 2011, DOI: 10.1007/S10617-011-9075-5. |
Partha et al., Design, Synthesis, and Test of Networks on Chips, IEEE (Year: 2005). |
Srinivasan K. et al: “Linear programming based techniques for synthesis of network-on-chip architectures”, Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings. IEEE International Conference on San Jose, CA, USA Oct. 11-13, 2004, Piscataway, NJ, USA, IEEE. Oct. 11, 2004 (Oct. 11, 2004), pp. 422-429, XP010736641. |
Srinivasan Mural et al: “Mapping and physical planning of networks-on-chip architectures with quality-of-service guarantees”, Proceedings of The 2005 Asia and South Pacific Design Automation Conference, Jan. 18, 2005, DOI: 10.1145/1120725.1120737. |
Tobias Bjerregaard et al: “A Router Architecture for Connection-Oriented Service Guarantees in the MANGO Clockless Network-on-Chip”, Proceedings of the IEEE Conference and Exhibition on Design, Automation, and Test in Europe, Mar. 7, 2005, DOI: 10.1109/DATE.2005.36. |
Wei Zhong et al: “Floorplanning and Topology Synthesis for Application-Specific Network-on-Chips”, IEICE Transactions on Fundamentals of Electronics< Communications and Computer Sciences, Jun. 1, 2013, DOI: 10.1587/TRANSFUN.E96.A.1174. |
Zhou Rongrong et al: A Network Components Insertion Method for 3D Application-Specific Network-on-Chip, Proceedings of the 11th IEEE International Conference on ASIC, Nov. 3, 2015, pp. 1-4, DOI: 10.1109/ASICON.2015.7516952. |
David Atienza et al., Network-on-Chip Design and Synthesis Outlook, Science Direct, Integration the VLSI, journal 41 (2008) 340-359. |
Dumitriu Vet al: “Throughput-Oriented Noc Topology Generation and Analysis for High Performance SoCs”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, IEEE Service Center, Piscataway, NJ, USA, vol. 17, No. 10, Oct. 1, 2009 (Oct. 1, 2009), pp. 1433-1446, XP011267808, ISSN: 1063-8210, DOI: 10.1109/TVLSI.2008.2004592. |
Fangfa Fu et al: “A Noc performance evaluation platform supporting designs at multiple levels of abstraction”, Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference On, IEEE, Piscataway, NJ, USA, May 25, 2009 (May 25, 2009), pp. 425-429, XP031482069, ISBN: 978-1-4244-2799-4 *abstract* * p. 426-p. 429 *. |
Murali et al: “Synthesis of Predictable Networks-on-Chip-Based Interconnect Architectures for Chip Multiprocessors”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, IEEE Service Center, Piscataway, NJ, USA, vol. 15, No. 8, Aug. 1, 2007 (Aug. 1, 2007) , pp. 869-880, XP011187732, ISSN: 1063-8210, DOI: 10.1109/TVLSI.2007.900742. |
Picornell Tomas Tompic@Gap.Upv.Es et al: “DCFNoC A Delayed Conflict-Free Time Division Multiplexing Network on Chip”, Designing Interactive Systems Conference, ACM, 2 Penn Plaza, Suite 701 New York NY10121-0701 USA, Jun. 2, 2019 (Jun. 2, 2019), pp. 1-6, XP058637807, DOI: 10.1145/3316781.3317794 ISBN: 978-1-4503-5850-7. |
Number | Date | Country | |
---|---|---|---|
20210409284 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16728335 | Dec 2019 | US |
Child | 17471857 | US |