This application is related to torches that can be used to sustain an atomization source. In certain embodiments, the torch can comprise at least one refractory material in an effective amount or region to increase the torch life. In other embodiments, the torch can comprise a material comprising a melting point higher than the melting point of quartz.
A torch is typically used to sustain an atomization source such as a plasma. The high temperatures can greatly reduce the lifetime of the torch.
In one aspect, a torch comprising a body configured to sustain an atomization source in the body, in which at least an exit end of the body comprises at least one refractory material is provided.
In certain embodiments, the refractory material is coated onto the body of the torch. In some embodiments, the refractory material is present in an effective length along the longitudinal dimension of the torch body. In other embodiments, the refractory material is present in an effective thickness at the terminal region. In certain examples, the entire body comprises the refractory material. In some embodiments, the body comprises an opening configured to receive an optically transparent material, e.g., a window that can transmit or pass light in a radial direction from the torch. In some examples, the body comprises an outer tube and an inner tube within the outer tube, in which the refractory material is present on one of the inner tube and the outer tube. In additional examples, the body comprises an outer tube and an inner tube within the outer tube, in which the refractory material is present on both the inner tube and the outer tube. In some examples, the body comprises a non-refractory material at an entrance end and the refractory material at the exit end. In other examples, the refractory material and non-refractory material are coupled to each other with an adhesive or cement, e.g., 904 Zirconia cement.
In some embodiments, the refractory material and non-refractory material are fused to each other. In certain embodiments, the refractory material and non-refractory material are coupled to each other through a frit or a ground glass joint. In certain examples, the body comprises in which the body comprises an outer tube and an inner tube within the outer tube, in which the inner tube comprises a non-refractory material at an entrance end and the refractory material is at an exit end of the inner tube. In certain embodiments, the refractory material and non-refractory material are coupled to each other with an adhesive or cement, e.g., 904 Zirconia cement. In some embodiments, the refractory material and non-refractory material are fused to each other. In certain examples, the refractory material and non-refractory material are coupled to each other through a frit or a ground glass joint. In other examples, the body comprises an outer tube and an inner tube within the outer tube, in which the inner tube comprises the refractory material and an optically transparent window. In certain embodiments, the optically transparent window is configured to permit visual observation of an atomization source within the inner tube. In some embodiments, the optically transparent window is configured to pass visible light.
In additional examples, the refractory materials comprise at least one of alumina, zirconia, yttria, ceria, silicon nitride, boron nitride or refractory materials or ceramics that have working temperature greater than 1600 degrees Celsius or greater than 2000 degrees Celsius.
In another aspect, a torch comprising a hollow cylindrical outer tube and a hollow cylindrical inner tube within the hollow cylindrical outer tube, the hollow cylindrical outer tube comprising a fluid inlet configured to receive a cooling gas flow to cool outer surfaces of the hollow cylindrical inner tube, the hollow cylindrical inner tube configured to receive a gas effective to sustain an atomization source in the hollow tube, in which an exit end of the hollow cylindrical outer tube comprises a refractory material.
In certain embodiments, an exit end of the hollow cylindrical inner tube comprises a refractory material. In some embodiments, an entrance end of the hollow cylindrical outer tube comprises a non-refractory material. In further embodiments, the non-refractory material and the refractory material are coupled to each other. In some examples, the refractory material and the non-refractory material are coupled to each other through one or more of an adhesive, cement, a frit, a ground glass joint or are fused to each other. In additional examples, the refractory material of the outer tube comprises an effective length in the longitudinal direction of the inner tube. In some examples, the refractory material is coated onto an inner surface of the exit end of the outer hollow cylindrical tube. In certain embodiments, the exit end comprises solid refractory material. In other embodiments, the refractory material is present at an effective thickness to prevent degradation of the exit end of the outer tube.
In an additional aspect, a torch comprising a hollow cylindrical tube with an entrance end comprising a non-refractory material and an exit end comprising a refractory material, in which the non-refractory material and the refractory material are coupled to each other to provide a substantially fluid tight seal between the entrance end and the exit end is provided.
In certain embodiments, the refractory material and non-refractory material are coupled with an adhesive or cement, e.g., 904 Zirconia cement. In other embodiments, the refractory material and non-refractory material are fused to each other. In some examples, the refractory material and non-refractory material are coupled to each other through a frit or a ground glass joint. In some embodiments, the torch comprises a hollow cylindrical inner tube within the hollow cylindrical tube, the inner tube configured to sustain an atomization source.
In another aspect, a torch comprising a refractory material outer tube and an optically transparent window in the refractory material outer tube is provided.
In certain embodiments, the optically transparent window is at an entrance end of the torch. In other embodiments, the optically transparent window is configured to permit passage of visible wavelengths of light. In additional embodiments, a second optically transparent window configured to permit measurement of absorption of light by species in the torch can be present. In some embodiments, a refractory material inner tube positioned within the refractory material outer tune, in which the refractory material inner tube comprises an optically transparent window can be present. In some instances, the optically transparent window of the inner tube is aligned with the optically transparent window of the outer tube. In additional examples, the torch can include an additional optically transparent window in the refractory material outer tube. In some embodiments, the optically transparent window is fused to the refractory material outer tube. In some embodiments, the optically transparent window is coupled to the refractory material outer tube through a frit or a ground glass joint.
In an additional aspect, a system for sustaining an atomization source comprising a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end, in which the exit end comprises a refractory material in an effective length to prevent degradation of the exit end of the torch, and an induction device comprising an aperture configured to receive the torch and provide radio frequency energy to the torch to sustain the atomization source in the body of the torch. In some embodiments, the refractory material may be present in an effective amount.
In certain examples, the induction device can be configured as a helical coil. In other embodiments, the induction device can be configured as at least one plate electrode. In further embodiments, the induction device can be configured as two plate electrodes. In some examples, the induction device can be configured as three plate electrodes.
In some embodiments, the torch further comprises an inner hollow cylindrical tube comprising an entrance end and an exit end, in which the exit end of the inner hollow tube comprises a refractory material in an effective length and an effective amount to prevent degradation of the exit end of the inner hollow tube. In certain examples, the system can include a radio frequency energy source electrically coupled to the induction device. In some embodiments, the system can include a detector configured to detect excited species in the torch body. In other embodiments, the system can include a mass spectrometer fluidically coupled to the torch body and configured to receive species exiting from the torch body.
In another aspect, a system for sustaining an atomization source comprising a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end and a hollow cylindrical inner tube comprising an entrance end and an exit end, in which the inner tube is positioned in the outer tube, in which the exit end of the outer tube comprises a refractory material in an effective length and an effective amount to prevent degradation of the exit end of the outer tube, and an induction device comprising an aperture configured to receive the torch and provide radio frequency energy to the torch to sustain the atomization source in the body of the torch.
In certain embodiments, the induction device is configured as a helical coil. In other embodiments, the induction device is configured as at least one plate electrode. In some examples, the induction device is configured as two plate electrodes. In other examples, the induction device is configured as three plate electrodes. In some embodiments, the inner tube further comprises a refractory material at the exit end. In other examples, the system can include a radio frequency energy source electrically coupled to the induction device. In some embodiments, the system can include a detector configured to detect excited species in the torch body. In certain examples, the system can include a mass spectrometer fluidically coupled to the torch body and configured to receive species exiting from the torch body.
In an additional aspect, a method of reducing degradation of a torch configured to sustain an atomization source, the method comprising providing a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end, in which the exit end comprises an effective amount of a refractory material is provided.
In certain embodiments, the method can include configuring the refractory material to be present at an effective length in a longitudinal direction of the torch and along an internal surface of the outer tube of the torch. In other embodiments, the method can include configuring the refractory material to be coated onto the inner surface of the outer tube of the torch. In further embodiments, the method can include configuring the refractory material to be at least one of alumina, yttria, ceria, boron nitride, silicon nitride and other refractory materials. In certain examples, the method can include configuring the torch with a hollow cylindrical inner tube comprising an entrance end and an exit end, in which the exit end of the inner tube comprises an effective amount of a refractory material.
In another aspect, a method of reducing degradation of a torch configured to sustain an atomization source, the method comprising providing a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end and a hollow cylindrical inner tube within the hollow cylindrical outer tube, in which the hollow cylindrical inner tube comprises an entrance end and an exit end and in which the exit end of the outer tube comprises an effective amount of a refractory material is described.
In certain embodiments, the method can include configuring the refractory material to be present at an effective length in a longitudinal direction of the torch and along an internal surface of the outer tube of the torch. In other embodiments, the method can include configuring the refractory material to be coated onto the inner surface of the outer tube of the torch. In some embodiments, the method can include configuring the refractory material to be at least one of alumina, yttria, ceria, boron nitride, silicon nitride and other refractory materials. In some examples, the method can include configuring the torch with a hollow cylindrical inner tube comprising an entrance end and an exit end, in which the exit end of the inner tube comprises an effective amount of a refractory material.
In another aspect, a torch comprising a body configured to sustain an atomization source in the body, in which at least an exit end of the body comprises at least one material comprising a melting point higher than a melting point of quartz is provided.
In certain embodiments, the at least one material comprises a melting point at least 5% higher, 10% higher, 15% higher, 20% higher, 25% higher or more than the melting point of quartz. For example, the material can be a machinable glass ceramic such as, for example, Macor® machine glass ceramic commercially available from MTC Wesgo Duramic. In some embodiments, the entire body comprises the at least one material comprising the melting point higher than the melting point of quartz. In certain examples, the body comprises an opening configured to receive an optically transparent material. In other embodiments, the body comprises an outer tube and an inner tube within the outer tube, in which the at least one material comprising the melting point higher than the melting point of quartz is present on one of the inner tube and the outer tube. In some examples, the body comprises an outer tube and an inner tube within the outer tube, in which the at least one material comprising the melting point higher than the melting point of quartz is present on both the inner tube and the outer tube. In certain examples, the body comprises a material other than the at least one material comprising the melting point higher than the melting point of quartz at an entrance end of the torch. In further examples, the materials are coupled to each other with an adhesive or a cement. In additional examples, the materials are fused to each other. In some embodiments, the materials are coupled to each other through a frit or a ground glass joint. In certain examples, the torch can include an optically transparent window in the body. In other examples, the optically transparent window comprises an effective size for use with a fiber optic device. In certain embodiments, the optically transparent window comprises an effective size for viewing of an atomization source in the body with the unaided human eye.
In an additional aspect, a torch comprising a hollow cylindrical outer tube and a hollow cylindrical inner tube within the hollow cylindrical outer tube, the hollow cylindrical outer tube comprising a fluid inlet configured to receive a cooling gas flow to cool outer surfaces of the hollow cylindrical inner tube, the hollow cylindrical inner tube configured to receive a gas effective to sustain an atomization source in the hollow tube, in which an exit end of the hollow cylindrical outer tube comprises at least one material comprising a melting point higher than a melting point of quartz is described. In certain embodiments, the at least one material comprises a melting point at least 5% higher, 10% higher, 15% higher, 20% higher, 25% higher or more than the melting point of quartz. In some embodiments, the entire body comprises the at least one material comprising the melting point higher than the melting point of quartz.
In another aspect, a torch comprising a hollow cylindrical tube with an entrance end and an exit end comprising at least one material comprising a melting point higher than a melting point of quartz, in which the entrance end and the exit end are coupled to each other to provide a substantially fluid tight seal between the entrance end and the exit end is described. In certain embodiments, the at least one material comprises a melting point at least 5% higher, 10% higher, 15% higher, 20% higher, 25% higher or more than the melting point of quartz. In some embodiments, the entire body comprises the at least one material comprising the melting point higher than the melting point of quartz.
In an additional aspect, a torch comprising an outer tube comprising at least one material comprising a melting point higher than a melting point of quartz, and an optically transparent window in the outer tube is provided. In certain embodiments, the at least one material comprises a melting point at least 5% higher, 10% higher, 15% higher, 20% higher, 25% higher or more than the melting point of quartz. In some embodiments, the entire body comprises the at least one material comprising the melting point higher than the melting point of quartz. In certain examples, the melting point of the at least one material comprising the melting point higher than the melting point of quartz is at least 600° C., 625° C., 650° C., 675° C., 700° C., 725° C., 750° C., 775° C., 800° C., 825° C., 850° C., 875° C., 900° C., 925° C., 950° C., 975° C., 1000° C., 1100° C., 1200° C., 1300° C., 1400° C. or at least 1500° C.
In certain embodiments, the torches described herein can include two or more different materials with one of the materials generally being resistant to temperature degradation. For example, the torches can include quartz, e.g., HLQ270V8 quartz, coupled to a nitride, e.g., silicon nitride, a refractory material or other materials. In some embodiments, the two different materials can be coupled to each other through an interstitial material that can be effective to reduce the expansion or contraction differences that may result from different coefficients of thermal expansion (CTE) of the different materials. For example, the torch may include quartz coupled to silica nitride at a tip of the torch. The silica nitride tip can be coupled to the quartz using an interstitial material such as, for example, high temperature bonding materials, high temperature frits, ground glass or other suitable materials. In other instances, the tip and the quartz body can be coupled to each other at an elevated temperature to reduce the likelihood of CTE mismatch causing early deterioration of the torch.
Additional features, aspect, examples and embodiments are described in more detail below.
Certain embodiments are described with reference to the accompanying figures in which:
It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that certain dimensions or features of the torches may have been enlarged, distorted or shown in an otherwise unconventional or non-proportional manner to provide a more user friendly version of the figures.
Certain embodiments are described below with reference to singular and plural terms in order to provide a user friendly description of the technology disclosed herein. These terms are used for convenience purposes only and are not intended to limit the torches, methods and systems described herein.
In certain examples, the torches described herein can include one or more glass materials coupled to one or more other glass materials or non-glass materials which may have a higher melting point that the base glass material. Illustrative glass materials are commercially available from numerous sources including, but not limited to, Precision Electronics Glass (Vineland, N.J.) and may include, for example, quartz glasses or other suitable glasses.
Certain examples of the torches described herein can permit lower gas flows due to the higher temperature tolerances of the torches. By using lower gas flows, e.g., lower cooling gas flows, the atomization sources may operate at even higher temperatures, which can provide enhanced atomization and/or ionization efficiencies and improved detection limits. In some embodiments, the torches described herein may permit a flow rate reduction of 10%, 25%, 50% or more compared to conventional flow rates used with quartz torches.
In certain embodiments, a side view of an illustration of a body of a torch is shown in
In some embodiments, at least an effective amount of the section 140 can include a refractory material. The term refractory material refers to a material that retains its physical properties at high temperatures, e.g., at or above 1000° F. Refractory materials typically comprise a non-metallic species which may be in the form of an oxide. In some embodiments, the refractory material used in the torches described herein can be an acidic, neutral or basic refractory material. These terms generally refer to the environment that the refractory material is suitable for use in. For example, an acidic refractory material is one suitable for use in an acidic environment. In some embodiments, an acid may be present in the sample and/or solvent stream including, for example, nitric acid, sulfuric acid, hydrochloric acid, aqua regia, hydrofluoric acid and/or phosphoric acid which, in some instances, can be present from 1-10%, e.g., 2-5%. In other embodiments, organics such as kerosene, gasoline, and jet fuel can be preset in the sample and/or solvent. High solids such as salts, brines, sulfates, and high metal concentrations may also be present in certain instances.
Illustrative acidic refractory materials include, but are not limited to, silica (SiO2), zirconia (ZrO2), alumina (Al2O3), fire-clay refractories and the like. Illustrative neutral refractory materials include, but are not limited to, alumina (Al2O3), chromia (Cr2O3) and refractory materials comprising carbon. Illustrative basic refractory materials include, but are not limited, magnesia (MgO), dolomite, and chrome-magnesia. While quartz may be considered a refractory material by certain sources, for purposes of this disclosure quartz is intentionally not included in the term “refractory material.” For example, the term refractory material, as used herein, refers to refractory materials other than quartz. In some embodiments, the refractory material may be a refractory material that is effective to be exposed to a temperature of 600° C. or more without substantial degradation. While not wishing to be bound by any particular scientific theory, quartz generally degrades at about 570° C. If desired, the section 140 may have more than one type of refractory material, e.g., a first segment may include one type of refractory material and a second segment may include a different type of refractory material or different refractory materials may be coated or layered into the inner surfaces of the section 140.
In some embodiments, the refractory material may be coated onto an inner surface of the tube 100 in an effective length and/or effective thickness to prevent degradation of the materials comprising the outer portion of the torch section 140, e.g., to prevent degradation of any quartz present in the outer tube 140. While the exact length of the refractory material may vary, in some embodiments, the refractory material may extend about 15 mm to about 40 mm into the body of the torch from the exit end, e.g., about 15-27 mm or 26 mm into the body of the torch from the exit end 114 of the torch. In other embodiments, the refractory material may extend about 15 mm to about 30 mm into the body of the torch from the exit end 114 of the torch. In some instances, the refractory material may extend from the exit end into the torch body about the same length as a slot present in the torch body. In certain embodiments, the illustrative dimensions provided herein for the refractory material may also be used where the material present is a material comprising a melting point higher than the melting point of quartz.
In certain examples, the particular thickness of the refractory coating on the section 140 of the tube 100 may vary and the coating is not necessarily the same thickness along the longitudinal axis direction of the tube 100. The section 140 may experience higher temperatures at regions adjacent to the desolvation region 130 and lower temperatures at regions adjacent to the exit end 114 of the tube 100. The thickness adjacent to the end 114 may be less than the thickness present near the desolvation region 130 to account for the differences in temperature at different regions of the tube 100. While the exact longitudinal length of the desolvation region may vary, in certain embodiments, it may be about 11-15 from one end of the desolvation region to the other. In certain examples, a refractory material, or a material comprising a melting point higher than a melting point of quartz, may be present from where the desolvation region ends to the exit end 114.
In certain embodiments, the section 140 of the tube 100 may substantially comprise a refractory material. For example, the section 140 can include a solid body of refractory material that can be coupled to the section 130, which itself may be a refractory material or a non-refractory material. In some embodiments, the refractory material section can be coupled to the desolvation region section through an adhesive, a frit, a ground glass joint, can be fused to the desolvation region section or is otherwise coupled to the desolvation region section to provide a substantially fluid tight seal so gas does not leak out at the joint.
In some embodiments, substantially all of the outer tube can comprise a refractory material, e.g., a solid body of refractory material. In some instances, it may be desirable to include one or more optically transparent windows in the tube to permit viewing of the atomization source. Referring to
In certain examples, the exact dimensions of the optically transparent window can vary from torch to torch and system to system. In some embodiments, the optically transparent window is large enough to permit viewing of the atomization source with the unaided human eye from a distance of about 3-5 feet. In other embodiments, the optically transparent window may comprise dimensions of about 9 mm to about 18 mm, for example, about 12 mm to about 18 mm. The exact shape of the optically transparent window can vary from rectangular, elliptical, circular or other geometric shapes can be present. The term “window” is used generally, and in certain instances the window may take the form of a circular hole that has been drilled radially into the torch. The drilled hole can be sealed with an optically transparent material to provide a substantially fluid tight seal. In certain embodiments, the optically transparent window may comprise quartz or other generally transparent materials that can withstand temperatures of around 500-550° C. or higher. In some embodiments, an optical element such as, for example, a lens, mirror, fiber optic device or the like can be optically coupled to the hole or window to collect or receive light (or a signal) provided by the atomization source.
In certain embodiments, the torches described herein can also include an inner tube positioned in an outer tube. In some embodiments, the atomization source can be sustained at a terminal portion of the inner tube, and a cooling gas may be provided to cool the tubes of the torch. Referring to
In certain embodiments, the torches described herein can be used to sustain a plasma. Referring to
In certain embodiments, the torches described herein can be present in a system configured to detect one or more species that have been atomized and/or ionized by the atomization source. In some embodiments, the system comprises a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end, in which the exit end of the outer tube comprises a refractory material in an effective length and/or an effective amount to prevent degradation of the exit end of the torch. In certain embodiments, the system can also include an induction device comprising an aperture configured to receive the torch and provide radio frequency energy to the torch to sustain the atomization source in the torch.
In some examples, the induction device may be a helical coil as shown in
In some embodiments, the induction device may comprise one or more plate electrodes. For example and referring to
In certain embodiments, the torches described herein can be used in a system configured to perform mass spectrometry (MS). For example and referring to
In certain embodiments, the torches described herein can be used in optical emission spectroscopy (OES). Referring to
In certain examples, the torches described herein can be used in an atomic absorption spectrometer (AAS). Referring to
In certain embodiments, a method of reducing degradation of a torch can include providing a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end, in which the exit end comprises an effective amount of a refractory material. In some examples, the refractory material can be configured to be present at an effective length in a longitudinal direction of the torch and along an internal surface of the outer tube of the torch. In other examples, the refractory material can be configured to be coated onto the inner surface of the outer tube of the torch. In some embodiments, the refractory material can be configured to be at least one of alumina, yttria, ceria, silicon nitride, boron nitride or refractory materials or ceramics that have working temperature greater than 1600 degrees Celsius or greater than 2000 degrees Celsius. In certain examples, the torch can be configured with a hollow cylindrical inner tube comprising an entrance end and an exit end, in which the exit end of the inner tube comprises an effective amount or an effective length or both of a refractory material.
In some examples, a method of reducing degradation of a torch configured to sustain an atomization source can include providing a torch comprising a hollow cylindrical outer tube comprising an entrance end and an exit end and a hollow cylindrical inner tube within the hollow cylindrical outer tube, in which the hollow cylindrical inner tube comprises an entrance end and an exit end and in which the exit end of the outer tube comprises an effective amount, an effective length or both of a refractory material. In certain embodiments, the method can include configuring the refractory material to be present at an effective length in a longitudinal direction of the torch and along an internal surface of the outer tube of the torch. In some examples, the method can include configuring the refractory material to be coated onto the inner surface of the outer tube of the torch. In certain embodiments, the method can include configuring the refractory material to be at least one of alumina, yttria, ceria, silicon nitride, boron nitride or refractory materials or ceramics that have working temperature greater than 1600 degrees Celsius or greater than 2000 degrees Celsius. In additional examples, the method can include configuring the torch with a hollow cylindrical inner tube comprising an entrance end and an exit end, in which the exit end of the inner tube comprises an effective amount, an effective length or both of a refractory material.
Certain specific examples are described below to illustrate further some of the novel aspects of the technology described herein.
A photograph of a conventional plasma torch comprising a quartz outer tube is shown in
An illustration of a torch is shown in
When introducing elements of the examples disclosed herein, the articles “a,” “an,” “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including” and “having” are intended to be open-ended and mean that there may be additional elements other than the listed elements. It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that various components of the examples can be interchanged or substituted with various components in other examples.
Although certain aspects, examples and embodiments have been described above, it will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that additions, substitutions, modifications, and alterations of the disclosed illustrative aspects, examples and embodiments are possible.
This application claims priority to each of U.S. Application No. 61/671,291 filed on Jul. 13, 2012 and U.S. Application No. 61/781,758 filed on Mar. 14, 2013, the entire disclosure of each of which is hereby incorporated herein by reference for all purposes. This application is a continuation of U.S. Ser. No. 13/940,077 filed on Jul. 11, 2013, which issued as U.S. Pat. No. 9,259,798 on Feb. 16, 2016.
Number | Name | Date | Kind |
---|---|---|---|
1958406 | Darrah | May 1934 | A |
2708341 | Zucrow | May 1955 | A |
2833371 | Honma | May 1958 | A |
2847899 | Walsh | Aug 1958 | A |
3004137 | Karlovitz | Oct 1961 | A |
3052614 | Herold | Sep 1962 | A |
3224485 | Blomgren | Dec 1965 | A |
3248513 | Sunnen | Apr 1966 | A |
3264508 | Lai | Aug 1966 | A |
3324334 | Reed | Jun 1967 | A |
3370966 | Schwartz | Feb 1968 | A |
3408283 | Chopra | Oct 1968 | A |
3416870 | Wright | Dec 1968 | A |
3428401 | Buzza | Feb 1969 | A |
3492074 | Rendina | Jan 1970 | A |
3619061 | Mitchell | Nov 1971 | A |
3668066 | Hendel | Jun 1972 | A |
3958883 | Turner | May 1976 | A |
4004117 | Amsler | Jan 1977 | A |
4118618 | Gauthier | Oct 1978 | A |
4256404 | Walker | Mar 1981 | A |
4263089 | Keller | Apr 1981 | A |
4293220 | Denton | Oct 1981 | A |
4300834 | Demers | Nov 1981 | A |
4362936 | Hofmann | Dec 1982 | A |
4419575 | Lakatos | Dec 1983 | A |
4482246 | Meyer | Nov 1984 | A |
4540884 | Stafford | Sep 1985 | A |
4575609 | Fassel | Mar 1986 | A |
4578583 | Ciammaichella | Mar 1986 | A |
4578589 | Aitken | Mar 1986 | A |
4609808 | Bloyet | Sep 1986 | A |
4629940 | Morrisroe | Dec 1986 | A |
4640627 | Tracy | Feb 1987 | A |
4736101 | Syka | Apr 1988 | A |
4766287 | Morrisroe | Aug 1988 | A |
4782235 | Lejeune | Nov 1988 | A |
4795880 | Hayes | Jan 1989 | A |
4798464 | Boostrom | Jan 1989 | A |
4812166 | Saiki | Mar 1989 | A |
4818916 | Morrisroe | Apr 1989 | A |
4886359 | Berndt | Dec 1989 | A |
4897282 | Kniseley | Jan 1990 | A |
4906900 | Asmussen | Mar 1990 | A |
4955717 | Henderson | Sep 1990 | A |
5012065 | Rayson | Apr 1991 | A |
5024725 | Chen | Jun 1991 | A |
5083004 | Wells | Jan 1992 | A |
5086255 | Okamoto | Feb 1992 | A |
5200595 | Boulos | Apr 1993 | A |
5217362 | Thompson | Jun 1993 | A |
5259254 | Zhu | Nov 1993 | A |
5308977 | Oishi | May 1994 | A |
5334834 | Ito | Aug 1994 | A |
5356674 | Henne | Oct 1994 | A |
5438194 | Koudijs | Aug 1995 | A |
5468955 | Chen | Nov 1995 | A |
5526110 | Braymen | Jun 1996 | A |
5534998 | Eastgate | Jul 1996 | A |
5597467 | Zhu | Jan 1997 | A |
5640841 | Crosby | Jun 1997 | A |
5648701 | Hooke | Jul 1997 | A |
5680014 | Miyamoto | Oct 1997 | A |
5818581 | Kurosawa | Oct 1998 | A |
5908566 | Seltzer | Jun 1999 | A |
5916455 | Kumagai | Jun 1999 | A |
5958258 | Ishihara | Sep 1999 | A |
5975011 | Ohkusa | Nov 1999 | A |
5994697 | Kato | Nov 1999 | A |
6033481 | Yokogawa | Mar 2000 | A |
6041735 | Murzin | Mar 2000 | A |
6080271 | Fujii | Jun 2000 | A |
6207924 | Trassy | Mar 2001 | B1 |
6227465 | Kelly | May 2001 | B1 |
6236012 | Carre | May 2001 | B1 |
6248998 | Okumoto | Jun 2001 | B1 |
6329757 | Morrisroe | Dec 2001 | B1 |
6453660 | Johnson | Sep 2002 | B1 |
6541766 | Kato | Apr 2003 | B2 |
6614021 | Kalinitchenko | Sep 2003 | B1 |
6617794 | Barnes | Sep 2003 | B2 |
6621078 | Taniguchi | Sep 2003 | B2 |
6627877 | Davis | Sep 2003 | B1 |
6639227 | Glavish | Oct 2003 | B1 |
6809312 | Park | Oct 2004 | B1 |
6899787 | Nakano | May 2005 | B2 |
7106438 | Morrisroe | Sep 2006 | B2 |
7114337 | Cazalens | Oct 2006 | B2 |
7119330 | Kalinitchenko | Oct 2006 | B2 |
7276688 | Weiss | Oct 2007 | B2 |
7323655 | Kim | Jan 2008 | B2 |
7511246 | Morrisroe | Mar 2009 | B2 |
7622693 | Foret | Nov 2009 | B2 |
7737397 | Morrisroe | Jun 2010 | B2 |
7742167 | Morrisroe | Jun 2010 | B2 |
7880147 | Morrisroe | Feb 2011 | B2 |
8071906 | Smiljanic | Dec 2011 | B2 |
9259798 | Morrisroe | Feb 2016 | B2 |
20020125425 | Kato | Sep 2002 | A1 |
20030184234 | Hsu | Oct 2003 | A1 |
20040001295 | Kumar | Jan 2004 | A1 |
20040124779 | Howald et al. | Jul 2004 | A1 |
20040169855 | Morrisroe | Sep 2004 | A1 |
20040173579 | Carr | Sep 2004 | A1 |
20040219737 | Quon | Nov 2004 | A1 |
20050082471 | Kalinitchenko | Apr 2005 | A1 |
20060136158 | Goldberg | Jun 2006 | A1 |
20060163468 | Wells | Jul 2006 | A1 |
20060285108 | Morrisroe | Dec 2006 | A1 |
20060286492 | Morrisroe | Dec 2006 | A1 |
20070075051 | Morrisroe | Apr 2007 | A1 |
20070084834 | Hanus | Apr 2007 | A1 |
20080017794 | Verbeck | Jan 2008 | A1 |
20080173810 | Morrisroe | Jul 2008 | A1 |
20100225909 | Feilders | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
281158 | Sep 1988 | EP |
602764 | Jun 1994 | EP |
0673186 | Sep 1995 | EP |
1891407 | Feb 2008 | EP |
56000911 | Jan 1981 | JP |
59207828 | Nov 1984 | JP |
62273047 | Nov 1987 | JP |
1109648 | Apr 1989 | JP |
1124951 | May 1989 | JP |
2001265500 | Oct 1989 | JP |
4008873 | Jan 1992 | JP |
05-288682 | Nov 1993 | JP |
06027083 | Feb 1994 | JP |
6283484 | Oct 1994 | JP |
7057893 | Mar 1995 | JP |
7153420 | Jun 1995 | JP |
7211489 | Aug 1995 | JP |
07307199 | Nov 1995 | JP |
10-022096 | Feb 1998 | JP |
11258163 | Sep 1999 | JP |
2001-183297 | Jul 2001 | JP |
2002343599 | Nov 2002 | JP |
2003168594 | Jun 2003 | JP |
2003168595 | Jun 2003 | JP |
2003194273 | Jul 2003 | JP |
2003215042 | Jul 2003 | JP |
2006-516325 | Jun 2006 | JP |
2005018688 | Jul 2007 | JP |
8806834 | Sep 1988 | WO |
9638856 | Dec 1996 | WO |
2004055493 | Jul 2004 | WO |
Entry |
---|
EP Communication for EP06748915.8. |
First Official Action for CN 200680021600.X. |
International Search Report/Written Opinion for PCT/US2006/0232777. |
Second Official Action for CN200680021600.X. |
IPRP for PCT/US2013/050130 mailed on Dec. 9, 2013. |
International Search Report/Written Opinion for PCT/US2009/000278 dated Oct. 6, 2009. |
Eden et al. J. Phys. D: Appl. Phys. 36: 2869-2877, Dec. 2003. |
Kikuchi et al. J. Phys. D: Appl. Phys 37: 1537-1543, Jun. 2004. |
Boswell et al. IEEE Transactions on Plasma Science, 25: Dec. 1997. |
EP Communication for EP06784915.8. |
Second Official Action for CN 200680021600.X. |
IPRP for PCT/US2006/223277 dated Dec. 2007. |
First official action for Australian Patent Application No. 2006259381. |
International Search/Written Opinion for IPCT/US2006/223277 dated Dec. 2007. |
Official Action for AU 2003293514. |
International Search Report/Written Opinion for PCT/US06/008687. |
Eden et al. J. Phys. D: Apply. Phys. 36: 2869-2877, Dec. 2003. |
Kikuchi et al. J. Phys D: Appl. Phys. 37: 1537-1543, Jun. 2004. |
Boswell et al. IEEE Transaction on Plasma Sciences, 25: Dec. 1997. |
First official action for CN200680006366.2. |
First official action for AU2006223254. |
First official action for JP500981/2008. |
Dfficial Action for Australian Patent Application No. 2006284864. |
First official action for JP2008529236. |
Number | Date | Country | |
---|---|---|---|
20160255711 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61781758 | Mar 2013 | US | |
61671291 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13940077 | Jul 2013 | US |
Child | 15042261 | US |