None.
The present invention relates to a guide assembly for a pre-set power cable used in a torpedo tube and in particular, to a guide assembly that prevents snagging of the power cable during insertion and removal of a torpedo from the torpedo tube.
A torpedo pre-set power cable (also referred to as an A-cable) powers a torpedo prior to launch from a torpedo tube. The A-cable passes through an electrical penetrator of a torpedo tube breech door. Inside the torpedo tube, the A-cable is attached to a Torpedo Mounted Dispenser (TMD) via a series of hooks and retainers that secure the cable during separation from the torpedo (e.g., during launch). This securing action is necessary due to umbilical separation and the resultant loads that are encountered during a torpedo launch.
In various circumstances, the hooks and retainers can limit or provide excess slack in the A-cable. During loading and unloading of the torpedo from the torpedo tube; the slack can result in snagging the A-cable on the torpedo tube structure. This snagging can damage the A-cable and can impede the operation of other torpedo tube components. Thus, there is a need for an improved system to safely guide a torpedo pre-set power cable.
Accordingly, it is a primary purpose and general object of the present invention to provide a guide system that secures a torpedo pre-set power cable and prevents cable snagging during torpedo loading and unloading.
To attain the object of the present invention, the guide system provides a guide assembly that connects to the Torpedo Mounted Dispenser (TMD). The guide system also includes a longitudinal keeper that secures the torpedo pre-set power cable by encompassing and tightening down on the cable. A channel of the guide assembly is shaped to accommodate a protrusion of the longitudinal keeper.
When the protrusion is received in the channel; the keeper can slide along a length of the channel. As such, the keeper and channel define a mating track that permits loading and unloading of the torpedo by sliding the keeper within the channel along with the A-cable secured by the keeper. By controlling the keeper, the slack of the A-cable can be controlled. Controlling the A-cable slack substantially reduces snagging of the A-cable within the torpedo tube.
An alternate torpedo power cable guide system is provided. The guide system includes a guide assembly with a channel that connects to a torpedo tube at a lower longitudinal land of the tube. A section of the guide assembly including the channel can pivot to a stowed position or a deployed position to receive a protrusion of a longitudinal keeper. When the protrusion is in the channel; the keeper can slide along the channel length. The keeper and channel define a mating track that permits loading and unloading of the torpedo by sliding the keeper within the channel along with the A-cable secured by the keeper.
Other objects and advantages of the present invention will be apparent to those having ordinary skill in the art reading the instant specification, drawings, and appended claims.
Generally, the present invention comprises a guide system with a longitudinal keeper which secures an A-Cable (torpedo pre-set power cable). The keeper is the mechanical attachment of a cover and a base having a protrusion. The system also comprises a guide assembly having a channel sized to accommodate and allow the protrusion to slide within the channel. The guide assembly is secured to a weldment of a Torpedo Mounted Dispenser (TMD). Alternatively, the channel can be mounted as a pivoting hinge plate with the guide assembly attached to a lower longitudinal land of the torpedo tube.
Referring now to the drawings and more particularly to
The keeper 110 also includes a protrusion 116 as part of the base 112. The protrusion 116 can be partially shaped as a T-bolt. The guide assembly 120 securely mounts to the TMD 500 via a fastening mechanism (not shown) inserted through an aperture 124 on a track finger 125.
The channel 122 of the guide assembly 120 has a length that extends along a portion or a full length of the TMD 500. The channel 122 (having at least one end open) is configured to receive the protrusion 116 of the keeper 110 such that the keeper can slide along the length of the channel. The channel 122 is formed as a larger T-shaped indent to maintain a preferred orientation of the keeper 110 in relation to the TMD 500 as the keeper slides within the channel.
The TMD 500 may include a stud on the weldment back plate 502 and a fastener/screw internal to the weldment inside diameter to secure the channel 122 to the TMD. The load would be borne by the track finger 125 which protrudes behind the weldment back plate 502.
The side view of
It is understood that interaction of the protrusion 116 and the channel 122 is not limited to implementation of a T-track system. The keeper 110 and the channel 122 can cooperate to form any mating track. Other exemplary components that may form the mating track include, but are not limited to, an open-face hinge/hinge pin or a drawer-slide mechanism. Generally, the mating track cooperates such that the torpedo pre-set power cable 200 can be installed during loading of a torpedo by sliding the mating track components together.
Referring now to
The keeper cover 114 includes a plurality of apertures 115 (only two apertures are labeled for clarity) that correspond and align to base apertures 113. The base 112 and the cover 114 are connected to form an integral component with the pre-set power cable 200 positioned therein via one or more fasteners (e.g., screws, bolts and nuts) inserted through the apertures 113/115 (See
It is understood that the keeper 110 as shown in
Turning to
Generally, the channel 162 includes a pivoting member 164 and a connecting member 166. The channel 162 connects to a torpedo tube via the connecting member 166. The connecting member 166 is mechanically connected to a lower longitudinal land 600 of the torpedo tube by fasteners 167 (See
The channel 162 of the pivoting member 164 is shaped to receive the protrusion 116 of the keeper 110. The pivoting member 164 rotates or pivots on a cylindrical axle 165 secured to the connecting member 166. The pivoting member can pivot to a stowed position where the channel 162 is not accessible (See
The channel 162 is operable with the keeper 110 having the keeper cover 114 of
The alternate guide assembly 160 would only be used for a launch from a torpedo tube without a TMD 500. The pivoting member 164 of the guide assembly 160 would be in the stowed position when loading the torpedo. After the torpedo passes the alternate guide assembly 160, a torpedo person would raise the pivoting member 164 with the tab 168, and then slide the protrusion 116 into the channel 162 while further loading a torpedo into place.
Referring now to
Referring lastly to
The channel 162 has a length that extends along a portion of the torpedo tube. The channel 162 provides a mechanism that can mount to the torpedo tube lower longitudinal land 600 so that the A-Cable 200 is secured in the torpedo tube without the use of a TMD 500. In the stowed position, the channel 162 does not protrude into the circumferential clearance for weapon insertion. The pivoting track design orients the A-Cable 200 in the orientation as if attached to the TMD 500.
Once the tube is loaded, the torpedo is locked into the torpedo tube by a stop bolt mechanism. The TMD 500 is then unlocked from the torpedo, pulled back and fastened to the torpedo tube longitudinal lands 600 using TMD slide pad assembly pins. During TMD pull back, the longitudinal keeper 110 allows payout of cable slack from aft of the TMD 500 to forward of the TMD.
During a backhaul of a torpedo, the keeper 110 allows personnel to access the A-Cable 200 while side pad assemblies are released from the longitudinal lands 600 and the TMD 500 is pushed forward and locked to the torpedo. When the TMD 500 is pushed forward, the keeper 110 allows slack forward of the TMD to payout aft of the TMD. This action prevents the A-Cable 200 from snagging and tearing components of the torpedo tube.
It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims.
The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description only. It is not intended to be exhaustive or to limit the invention to the precise form disclosed; and obviously many modifications and variations are possible in light of the above teaching. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention as defined by the accompanying claims.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
892105 | White | Jun 1908 | A |
4145920 | Yamagami | Mar 1979 | A |
4799444 | Lisowski | Jan 1989 | A |
5385109 | Hrycin | Jan 1995 | A |
5988727 | Mueller | Nov 1999 | A |
7270069 | Thibodeau | Sep 2007 | B1 |
7467767 | Miles | Dec 2008 | B2 |
7574971 | Butts | Aug 2009 | B2 |
20160047496 | O'Connell | Feb 2016 | A1 |