1. Field of the Invention
This invention relates to fluid driven downhole motors used in the oil and gas industry and, more particularly, to an apparatus for preventing stalling of such motors caused by excessive resistance during drilling or milling.
2. Description of the Related Art
A downhole motor may be utilized at some point during the drilling or producing life of an oil well to aid in the removal of solid materials from the well. The motor can be incorporated into a drill string to provide rotational torque to a drill bit or other similar downhole drilling or milling device without the need to rotate the entire drill string. The motor is attached near the bottom end of the drill string. The drilling device is attached at or near the bottom of the motor. The motor and drilling device are deployed into the well, and fluid is pumped through the drill string and into the body of the motor, driving the lower section of the motor and causing it to rotate. The drilling device rotates along with the lower section of the motor to engage and loosen materials within the well bore.
During the course of the drilling operation, the operator must maintain an optimum weight on the drilling device to facilitate drill penetration yet prevent motor stall. Motor stall can result from shifting and accumulation of debris near the drilling device, which can cause resistance to motor rotation and back torque by the motor. Motor stalling can cause increased pressure drop across the motor and diminish the life of the motor. A weight indicator reading at the surface can be used to monitor weight on the drilling device. Motor stall can be monitored by a pump pressure gauge. When stalled, a pump pressure reading in excess of the maximum recommended pump pressure at a given rate will be observed. Once a motor becomes stalled, the operator must hoist the work string to decrease weight on the drilling device until motor rotation resumes, then lower the work string to optimize weight on the bit. This process is time consuming and lengthens the drill phase.
Due to the limited torque output of downhole motors, stalling can be frequent. Also, maintaining optimal weight on the bit is difficult, as the operator must attempt to lower the work string at a rate concurrent with the removal of drilled off material. In addition, cuttings from the drilled material can shift and gather under the drill bit, increasing back torque or altering the weight on the bit and causing a stall. The objective in a drilling operation with a downhole motor is to penetrate as quickly as possible without stalling the motor.
In view of the foregoing, the torque absorber of the present invention advantageously provides an assembly for deployment in a well having a first module with a bore, a second module partially disposed within the bore of the first module, a helical interface between the first and second modules, so that rotation of one of the modules relative to the other causes the modules to telescopingly move relative to each other between contracted and extended positions, a spring member mounted between the first and second modules for urging the modules towards the extended position, and one of the modules adapted to be stationarily connected to a drill string and the other stationarily connected to a drill motor body to absorb countertorque on the drill motor body.
As further features, the assembly of the present invention may also include one or more of the following: a passage through the modules to transmit drilling fluid; a spring having at least one mechanical member that has a tendency to return to a natural state when deformed; a spring having a plurality of conical washers; a spring located in the bore of the first module; a helical interface including a helical groove on at least one of the modules; a helical interface including a helical groove on one of the modules and a plurality of roller elements rotatably mounted to the other module.
An alternative embodiment of the present invention advantageously provides a method of operating a rotary abrasive device mounted to an end of a conduit string. The method includes providing an assembly having a first module and a second module, the second module being partially disposed within a bore of the first module, the first and second module being helically movable relative to each other between retracted and extended positions and having a spring located between that urges them to the extended position, mounting the assembly in the string with one of the modules stationary with the string and the other stationary with a body of a motor for rotating the abrasive device, applying weight to the body of the motor by a downward force passing from the string through the modules and the spring, causing the motor to rotate the device, if the abrasive device begins to stall, allowing the motor body to rotate in an opposite direction, thereby causing one of the modules to rotate relative to the other and move toward the contracted position, further compressing the spring and reducing the weight on the motor body, and as the stall condition alleviates, causing spring to rotate the said one of the modules toward the extended position to again increase the weight on the bit. As a further feature, the method may include pumping a liquid down the string, through the assembly and to the motor.
The various aspects of the invention will now be described by way of example only with reference to the accompanying drawings, in which:
Referring to
Lower unit assembly 26 includes a bottom sub 42, a lead screw 44, and a ball retainer 46. In this embodiment, bottom sub 42 is an adapter connected to outer body 19 of motor 18 by threads 48 or some other suitable means. Bottom sub 42 has a conduit 50 therewithin for distributing fluid flow to motor 18. Bottom sub 42 is connected to an end of lead screw 44 by threads 52 or some other suitable means. Lead screw 44 has a conduit 54 therewithin for distributing fluid flow to the conduit 50 in bottom sub 42. Ball retainer 46 is connected to bottom sub 42 by threads 56 or some other suitable means. Ball retainer 46 generally surrounds the lead screw 44, defining an annular space 58 between the inner circumference of the ball retainer 46 and the outer circumference of the lead screw 44.
A spring 60, or other similar compression member with an annular hollow interior, is disposed to fit upon and surround a smaller diameter cylindrical upper portion 62 of lead screw 44. Preferably, spring 60 comprises a plurality of opposed conical disc spring washers such as Belleville springs. However, other types of spring 60 may be used that are known to those skilled in the art, for example, a gas or hydraulic spring. A thrust bearing 64 with an annular hollow interior is disposed to fit upon and surround the lower end of upper portion 62 of lead screw 44. Thrust bearing 64 sits upon an enlarged upward facing shoulder 66 located at the base of upper portion 62 of lead screw 44, and separates shoulder 66 from the lower end of spring 60 to reduce friction between the components. Shoulder 66 prevents thrust bearing 64 and spring 60 from moving to the bottom of lead screw 44.
Upper portion 62 of lead screw 44, thrust bearing 64 and spring 60 are disposed within the hollow annular interior of ball body 30. A downward facing shoulder 67 located adjacent to the upper end of an enlarged lower portion 63 of lead screw 44 sits upon an upward facing shoulder 70 on an interior wall of ball body 30 when torque absorber 20 is fully extended as shown in
In a preferred embodiment, ball body 30 has a plurality of holes 72 drilled or otherwise formed into its wall that correspond to the locations of an external helical groove 76 formed on the lower portion 63 of lead screw 44. A plurality of lead screw balls or other roller elements 74 are positioned within some or all of holes 72 in ball body 30. Screw balls 74 protrude and rotationally engage helical groove 76 of lead screw 44. Helical groove 76 and balls 74 act as mating low friction threads, so that rotation of lead screw 44 relative to ball body 30 causes lead screw 44 to move upward or downward relative to ball body 30. Ball body 30 and screw balls 74 are at least partially disposed within the annular space between ball retainer 46 and lead screw 44. Ball retainer 46 prevents balls 74 from falling laterally out of holes 72 in ball body 30. Although the use of balls 74 is a preferred embodiment, balls 74 may be replaced by any type or number of devices, whether fixed or detached, without departing from the spirit or scope of the present invention. As illustrated by the section lines, the components of the helical interface including ball body 30 and lead screw 44 are formed of metal. Preferably, top sub 28 is attached to the top of ball body 30, and bottom sub 42 is attached to the bottom of ball retainer 46.
Conduits 36, 54 & 50 in top sub 28, lead screw 44, and bottom sub 42, together form a central bore in torque absorber 20 for fluid to pass from upper drill string 32, through the assembled torque absorber 20, and to motor 18. A seal 78 between top sub 28 and upper section 62 of lead screw 44 provides pressure integrity. A seal 80 between lower section 63 of lead screw 44 and bottom sub 42 provides pressure integrity. As illustrated, there are no reduced diameter sections having larger diameter sections above and below either in bore 36 or in flow passage 54. Top sub 28 is attached to an upper section of drill string 32, and the upper unit assembly 24 is held stationary by drill string 32. Bottom sub 42 is attached to outer body 19 of motor 18, and the components of lower unit assembly 26, i.e., bottom sub 42, lead screw 44 and ball retainer 46, are free to rotate as a result of motor back torque imposed on motor outer body 19, which is in a direction opposite of the direction of rotation of drill bit 16 during normal drilling. Upper unit assembly 24 will remain stationary while the components of lower unit assembly 26 rotate in this opposite direction.
The maximum distance of lead screw 44 advancement upward is equivalent to the fully extended distance between the lower end of ball body 30 and the upper end of bottom sub 42. As illustrated in
An overall lengthening or shortening of torque absorber 20 can alter the distance of telescoping travel for lead screw 44. Varying the stack length, washer thickness, and stack configuration of spring 60 can produce different spring rates. The downward force of spring 60 is assisted by internal pressure exerted upon the effective piston area 82 imposed by drilling fluid pressure. Changing the effective piston area 82 can change the force applied, and thus an optimal force at a given pump rate, torque and applied weight can be achieved. Preferably, when fully collapsed by applied weight, torque absorber 20 should store the same amount of torque via lead screw 44 advancement as that of motor 18 at maximum torque output. Downhole motor 18 may vary in maximum torque, maximum weight on bit, optimal gallons per minute, and optimal pressure drop.
The present invention has a number of advantages. For example, the invention provides an operator with greater control over a downhole motor and bit and enhances the working life of a motor. In addition, when used without a motor, the torque absorber will automatically rotate with the drill string when weight is applied and the unit is in the full contracted position. In addition to drilling and milling, it can be used for tool orientation and other applications.
While the invention has been described herein with respect to a preferred embodiment, it should be understood by those that are skilled in the art that it is not so limited. The invention is susceptible of various modifications and changes without departing from the scope of the claims. For example, the torque absorber could be inverted so that the ball body is rigidly connected to the motor body and the lead screw rigidly connected to the drill string. Telescoping and rotational movement between the lead screw and the motor body would still occur as a result of back torque on the motor body. Further, the helical groove could optionally be located on the inner diameter of the ball body rather than the exterior of the lead screw.
This application claims benefit from U.S. Provisional Application No. 60/434,849, filed Dec. 20, 2002
Number | Name | Date | Kind |
---|---|---|---|
3539026 | Sutliff et al. | Nov 1970 | A |
4518888 | Zabcik | May 1985 | A |
4901806 | Forrest | Feb 1990 | A |
Number | Date | Country |
---|---|---|
315209 | Jul 2003 | NO |
Number | Date | Country | |
---|---|---|---|
20040129457 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60434849 | Dec 2002 | US |