High-strength ropes are used for many commercial and recreational purposes; many of which require long continuous lengths to perform the desired function. For example, applications such as deep sea moorings, deep shaft hoisting, deep-sea winching, tower cranes, aerial lifting or hoisting, and other applications. Many of these applications require a substantial length of rope to perform its function, and the self-weight of the rope may become excessive and hinder the ability to perform the desired function. Moreover, because many of these applications involve hoisting or lifting objects, it is desirable for these ropes to be torque-balanced; that is, the configuration of the lay of the individual wires comprising the rope strands and the twist of the rope strands in order to form the rope are substantially balanced such that the rope inherently resists rotating when a tension force is applied.
If the rope is not torque-balanced, the item being hoisted or lifted will just rotate in a circle which may introduce imbalance or other undesirable forces or movements. Many of the commercial applications utilize wire rope because it provides a high strength and sufficient ductility thereby allowing for a gradual and visual indication of failure or damage prior to actual failure. The ability to detect potential failures using non-destructive testing is paramount for many of these applications as it allows rope defects to be observed by operators and inspectors prior to the occurrence of an actual failure and thereby prevent accidents.
One persistent shortcoming in the art is that the weight of wire rope limits many applications because the wire rope itself weighs so much that it significantly works against the desired functionality of the application utilizing wire rope. One option available is to reduce the weight of the rope by using lighter-weight, high-strength synthetic fiber ropes. High-strength synthetic fiber ropes provide a desirable strength-to-weight ratio and may also be torque-balanced or rotation resistant. However, in any running rope applications wherein the rope has to be spooled on a multilayer drum or winch, synthetic ropes tend to perform poorly. Synthetic fiber ropes often fail in running rope applications because they lack the abrasion resistance and durability necessary. Further, synthetic fiber rope tends to flatten when it is wound under tension and thus, it is not ideal for multi-layer spooling applications. The continual abrasion and flattening out of wire rope when it is spooled on a drum or winch gradually breaks down the fibers thereby gradually reducing the strength of the rope. This reduction in strength is usually not detectable using non-destructive testing thereby leaving the condition of the rope unknown at any given time. If the actual strength of the rope decreases to a point that it is lower than the working stress required for the application, then a sudden failure may occur. Since the working stress is experienced when the rope is hoisting or otherwise being tensioned, a sudden failure of the wire rope would only occur when it is loaded and would put workers at risk and/or cause damage to the equipment being hoisted and surrounding property, or potentially many other undesirable and/or dangerous conditions.
There is a substantial need in the art for a reduced-weight torque-balanced rope that (i) provides the strength-to-weight ratio of high-strength synthetic rope, (ii) provides the tensile strength provided by wire rope or high-strength synthetic rope, (iii) is cut and abrasion resistant, and (iv) has the desired durability of wire rope for rope or tension members that are used in running-rope or other applications.
One embodiment of present invention is directed to a reduced-weight torque-balanced rope that (i) provides the strength-to-weight ratio of high-strength synthetic rope, (ii) provides the tensile strength provided by wire rope or high-strength synthetic rope, (iii) is cut and abrasion resistant, and (iv) has the desired durability of wire rope for rope or tension members that are used in running-rope or other applications.
The rope is a hybrid rope constructed of both fiber and wires. A plurality of strands are twisted and then compacted together to construct the hybrid rope. Each strand can be constructed of a fiber center, a jacket surrounding the fiber center, and a plurality of wires surrounding the jacket. The fiber center can be constructed of one or more high-strength synthetic fibers or yarns. The jacket can be constructed of polypropylene, thermoplastic polyurethane, high-density polyethylene, linear low-density polyethylene, nylon or other similar materials. The jacket can have a braided or woven design and adds a protective layer between the fiber center and the wires. The wires can be constructed of high-strength steel wires, galvanized steel or stainless steel.
The fibers or yarns that make of the fiber center are twisted to lay right and then covered with the jacket. The wires then surround the jacket and are twisted to lay to the left. This creates a torque-balanced condition of the hybrid rope.
Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures.
The accompanying drawings form a part of the specification and are to be read in conjunction therewith, in which like reference numerals are employed to indicate like or similar parts in the various views, and wherein:
The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. For purposes of clarity in illustrating the characteristics of the present invention, proportional relationships of the elements have not necessarily been maintained in the drawing figures.
The following detailed description of the invention references specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The present invention is defined by the appended claims and the description is, therefore, not to be taken in a limiting sense and shall not limit the scope of equivalents to which such claims are entitled.
A hybrid rope 10 embodying various features of the present invention is shown in
As shown in
One embodiment of fiber center 14 includes having a plurality of fiber strands 20 twisted at a lay angle in a range between about one and about thirty degrees (1°-30°). One embodiment includes fiber strands 20 having a lay angle of about two degrees (2°). Another embodiment includes fiber strands 20 having a lay angle of about twelve and one-half degrees (12.5°). Fiber strands 20 may be configured to lay to the right or to the left. The entirety of hybrid rope 10 can have a size from about 6 mm to about 76 mm in diameter.
As further shown in
As shown if
As shown in
Referring to
The embodiment of hybrid rope 10 shown in
From the foregoing it will be seen that this invention is one well adapted to attain all ends and objects hereinabove set forth together with the other advantages which are obvious and which are inherent to the structure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative, and not in a limiting sense.
This Application claims priority to U.S. Provisional Patent Application Ser. No. 61/785,823, filed on Mar. 14, 2013, entitled “Torque Balanced Hybrid Rope,”, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2018230 | Robertson | Oct 1935 | A |
3092956 | Naysmith | Jun 1963 | A |
3374619 | Adams et al. | Mar 1968 | A |
3686855 | Falcy et al. | Aug 1972 | A |
3705489 | Smollinger | Dec 1972 | A |
4106276 | Hosoya | Aug 1978 | A |
4321854 | Foote et al. | Mar 1982 | A |
4365467 | Pellow | Dec 1982 | A |
4807680 | Weidenhaupt | Feb 1989 | A |
4878343 | Weidenhaupt | Nov 1989 | A |
4887422 | Klees et al. | Dec 1989 | A |
5797254 | Walton | Aug 1998 | A |
6334293 | Poethke et al. | Jan 2002 | B1 |
6412264 | De Josez et al. | Jul 2002 | B1 |
6563054 | Damien et al. | May 2003 | B1 |
8079208 | Volpi | Dec 2011 | B2 |
8176718 | Ridge et al. | May 2012 | B2 |
8438826 | Pourladian et al. | May 2013 | B2 |
20100162882 | Shakespeare | Jul 2010 | A1 |
20120085077 | Pourladian et al. | Apr 2012 | A1 |
20120159919 | Gauthier et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1391355 | Apr 1975 | GB |
Entry |
---|
Timothy W. Klein, The Changing Culture of Wire Ropes for Vertical Lift Bridges, Heavy Movable Structures, Inc. Thirteenth Biennial Symposium, Oct. 25-28, 2010, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140260175 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61785823 | Mar 2013 | US |