1. Field of Invention
The present invention relates to a method and apparatus for controlling the operation of a pump, such as a centrifugal pump.
2. Description of Related Art
Many known Variable Frequency Drive (VFD) systems create accurate mathematical models of the motors being driven in order to provide precise control over speed and torque, which are used for controlling the operation of pumps. Such known methods and devices include the following:
U.S. Pat. No. 6,591,697 discloses a pump regulating technique based on a relationship of torque and speed versus the pump flow rate and the ability to regulate the pump flow using a Variable Frequency Drive (VFD) to adjust the centrifugal pump speed. However, this technique does not include logic that would provide for protection against undesirable operating conditions, such as a dry run condition, a minimum flow condition, a runout condition, or some combination thereof. Instead, this technique merely utilizes calibrated speed versus torque curves which are application specific to obtain flow thereby reducing flexibility during field setup.
U.S. Pat. No. 6,464,464 sets forth a control and pump protection algorithm which uses a VFD and auxiliary instrumentation to regulate flow, pressure or speed of a centrifugal pump, while other VFD systems utilize flow or pressure switches to identify undesired operating conditions. However, the use of additional process flow switches and other auxiliary instrumentation adds cost and complexity to the drive system, a potential failure point, and unnecessary cost.
U.S. Pat. Nos. 5,930,092 and 5,754,421 disclose pump protection techniques based on an observation of the motor amperage draw and speed and then a correlation of the resulting power reading to various operating conditions (e.g. dry running, closing valves). However, this technique is suitable only for constant speed applications and fails to provide control differentiation for various conditions; protective settings result in only “tripping” or shutting off of the motor.
Another known pump control technique is based on a VFD having parameters that allow maximum and minimum torque values to be configured to prevent the load driver (motor) from operating outside of these parameters. However, this drive technique does not provide logic for interpreting different undesirable operating conditions, nor does it allow for scaling of centrifugal loads, such as pumps or take into account mechanical losses in small pumps at reduced speed.
Other known ways for controlling the operation of pumps include the following: U.S. Pat. No. 4,470,092 discloses a motor protector that trips a motor based on a comparison of one or more sensed trip point parameters and programmed trip point parameters. U.S. Pat. No. 4,827,197 discloses a pump with overspeed protection that adjusts the pump speed based on sensed tachometer and current values, in which the torque is computed based on the sensed current value, an angular acceleration is computed based on the sensed tachometer value, inertia is computed based on the computed torque and angular acceleration, and a table lookup is used to provide a maximum speed of rotation.
U.S. Pat. No. 5,726,881 discloses a pump with overspeed protection that adjusts the pump speed based on two sensed rotational speeds detected by sensors. Similarly, see also U.S. Pat. No. 5,649,893 that discloses a pump with series-implemented protection means. U.S. Pat. No. 5,736,823 discloses a blower and motor combination with constant air flow control that adjusts torque of the motor based on sensed motor speed and current from sensor and flow rate inputs from flow rate input devices, in which speed, torque, pressure and air flow characteristics of the blower are used in making the torque calculation. U.S. Pat. No. 5,742,522 discloses a pump having a digital torque estimator that is used to detect load changes based on sensed current and voltage values with sensors. U.S. Pat. No. 5,917,688 discloses a pump with overspeed protection that adjusts the pump speed based on two sensed rotor and motor speed values detected by sensors. U.S. Pat. No. 6,501,629 discloses a motor with a controlled power line that adjusts the motor power based on sensed motor current and voltage values detected by sensors, in which a measured input power is compared to an input power limited range and the power is disconnected based on this comparison. U.S. Pat. No. 6,679,820 discloses a method for limiting the operational speed of a motor based on a collective evaluation using a method involving rotor and torque tables and including a step of determining an actual ratio of change in acceleration and difference in drag torque speed terms of a rotor in relation to a predetermined range of an expected ratio of change.
The above devices and techniques do not include logic that differentiates undesirable operating conditions to control the pump appropriately for each condition and there is a need in the prior art for controlling the operation of a pump that differentiates between undesirable operating conditions. In some cases auxiliary instrumentation and controls are required.
The present invention provides a new and unique method and apparatus for controlling the operation of a pump, such as a centrifugal pump, featuring steps of either adjusting the operation of the pump, or issuing a warning to a user of the pump of an undesirable operating condition, or both, based on a comparison of an actual torque value and a corrected torque value, either alone or in combination with a further step of compensating the corrected torque value based on a mechanical power offset correction.
The corrected torque value may include a Best Efficiency Point (BEP) torque value and may also be compensated for based on at least the current operating speed of the pump. The pump has a controller for performing the steps of the method. In one embodiment, the controller compensates the corrected torque value based on the square of the speed change of the pump. The comparison may include a ratio of the actual torque value to the corrected torque value, and the ratio of the actual torque value to the corrected torque value may also be compared to ratios corresponding to either a dry run condition, a minimum flow condition, a runout condition, or some combination thereof.
In operation, the controller detects and differentiates between different undesirable operating conditions, including either a dry run condition, a minimum flow condition, a runout condition, or some combination thereof, and controls the pump accordingly by either slowing the pump to a safe operating speed, shutting down the pump, re-starting the pump after a time delay, or some combination thereof. In the pump, a protection delay can also be set to avoid nuisance trips caused by system transients. The controller may include a variable frequency drive (VFD) or a programmable logic controller (PLC).
The present invention is implemented using control logic that utilizes the direct feedback of torque (or power) and speed to identify undesirable operating conditions and provide the appropriate operating response to protect the driven machine (centrifugal pump) from damage. The control logic can be embedded in the VFD or PLC.
In operation, the algorithm for the control logic compensates the original torque input data for the current operating speed according to the square of the speed change and compensates for mechanical losses, such as seal and bearing losses, which vary linearly with the speed change.
The invention also includes apparatus in the form of a centrifugal pump having such a controller for controlling the operation of the pump, wherein the controller either adjusts the operation of the pump, or warns a user of the pump, or both, based on a comparison of an actual torque value and a corrected torque value, as well as the controller itself for performing such steps.
The user can disable all of the aforementioned functionality of the pump at any time.
One advantage of the torque controlled pump protection technique with mechanical loss compensation, according to the present invention, is that it eliminates the need for auxiliary instrumentation and controls, such as a flow meter, pressure switch, flow switch etc.
Another advantage of the torque controlled pump protection technique, according to the present invention, is that it does not require expensive and complex auxiliary equipment, which may also be potential points of failure.
Moreover, the present invention also provides protection for centrifugal pumps while differentiating between dangerous operating conditions (e.g. dry running) and/or conditions where transient conditions (e.g. shut-off operation) may occur and the protection revoked once the condition clears.
Finally, the mechanical power offset correction adjusts the speed corrected torque values to extend the operating speed range for smaller and large hp units.
The drawing, not drawn to scale, includes the following Figures:
In operation, the controller 102 has an enter application data module 102a (
Alternatively, values different from the default values can be used for BEP power and BEP speed based on manufacturer's literature. The threshold values must be input during field setup for DRY RUN (A %), MIN FLOW (B %) and RUNOUT FLOW (C %) based on system operating conditions and pump performance data in order to differentiate between shut-off, dry running and run-out conditions. The algorithm set forth herein calculates and displays values of Calc Torque % and Corr BEP torque % at the current operating point to facilitate set-up of A, B and C %.
The controller 102 has a correct for speed module 102b (
In Step 12, the correction of the BEP torque (TBEP) is made for actual speed conditions with the power offset. This correction is particularly important for pumps having small or large HP motors. See
The mechanical power offset correction adjusts the corrected BEP torque which is important for smaller HP units operating at lower speeds. As shown in
In contrast,
As shown in
To summarize, the power offset can compensate small and large HP motors to extend the operating speed range for torque based pump protection.
The algorithm set forth herein corrects the torque at BEP for actual operating speed and power offset based on the following equations.
For a speed range above 33% Motor FL Rpm (actual % may vary slightly by VFD manufacturer), the following equations are used:
Corr Bep T In-Lbs=[[Act Spd/Bep Spd]2×[Tbep−Trq Offset]]+[[Act Spd/Bep Spd]×Trq Offset].
For a speed range below 33% Motor FL Rpm (actual % may vary slightly by VFD manufacturer), the following equations are used:
Corr Bep T In-Lbs=[[Act Spd/Bep Spd]2×[Tbep−Trq Offset]]+[Trq Offset], where:
Bep Spd=pump speed, rpm, associated with the BEP Power. Default value=Motor Full Load Speed;
Bep Power=Power at current specific gravity, HP or Kw, Default value=90% of Motor Nominal Power;
Pwr Offset=Power, Hp or Kw (mechanical losses such as seals and bearings) (the values of these parameters are provided in the manufacturer's literature);
TC=Current Motor Torque, in—lbs;
Tbep In-Lbs=[[63025×Bep Power]/Bep Spd](Bep Power is in HP);
Tbep In-Lbs=[[63025×[Bep Power/0.74569]]/Bep Spd] (Bep Power is in Kw);
Trq Offset In-Lbs=[[63025×Pwr Offset]/Bep Spd](Pwr Offset is in HP)
Trq Offset In-lbs=[[63025×[Pwr Offset/0.74569]]/Bep Spd] (Pwr Offset is in Kw)
The controller 102 has an evaluate module 102c (
The controller 102 has a determine status module 102d (
A %: Running dry condition;
B %: Minimum flow or shutoff operation condition; and
C %: Runout flow condition.
These percentages are set as default values in the step 10 by the user and may vary or be varied based on the pump size and/or application. The scope of the invention is not intended to any particular percentage or percentages used to determine the status of the pump condition. As shown, if the torque comparison is greater than B % and less than C %, then the determine status module 102d determines the status of the pump to be O.K. and returns the controller 102 to step 12 for correcting for speed.
However, if the torque comparison is less than B % or greater than C %, then the determine status module 102d determines the status of the pump condition to be not O.K. and either in one case if the torque comparison is less than B % passed the controller to a step 18 for determining whether the pump condition is a MIN FLOW or DRY RUN condition, or in the other case if the torque comparison is greater than C % pass the controller 102 to a step 20 for controlling the operation of the pump 100 based on a RUNOUT condition.
In the case of the RUNOUT condition, the RUNOUT condition module 102f adjusts the operation of the pump 100, or issues a warning of the RUNOUT condition, or both. In particular, the RUNOUT condition module 102f can adjust the operation of the pump 100 by, for example, decreasing the speed of the pump to meet C % requirement. The RUNOUT condition module 102f can also auto reset the pump 100 once the minimum speed is reached. The deceleration ramp of the pump motor may be adjustable. The RUNOUT condition module 102f will perform the RUNOUT fault routine after a predetermined protection delay to avoid nuisance trips caused by system transients. After performing step 20, the RUNOUT condition module 102f returns the controller 102 to the step 12 for correcting for speed once the RUNOUT condition clears.
In effect, a RUNOUT protection condition is declared if the ratio of the Act Motor Torque/Corrected BEP Torque>C %. A typical setting is >120% of BEP Torque.
The reaction of the drive can be set to either warn the user with no further action taken or reduce speed enough so that the ratio of the Actual Motor Torque/Corrected BEP Torque=C %. The protection delay period can be set prior to declaring a RUNOUT condition. If the RUNOUT condition clears, the speed will be adjusted upward until the C % is reached or the original setpoint is achieved. The deceleration ramp during a RUNOUT condition can be adjusted by the user to suit the application. The drive can also be set to automatically reset a RUNOUT condition once the unit has reached minimum speed to check if the system transient condition has cleared. The number of resets and time between resets is adjustable by the user. Once the number of resets is exhausted, if the condition has not cleared, the unit will remain at minimum speed until action is taken by the user.
The controller 102 has a DRY RUN or MIN FLOW condition module 102e that determines whether the pump is in a DRY RUN condition or a MIN FLOW condition based on the value of A %.
If the torque comparison is less than A %, then the DRY RUN or MIN FLOW condition module 102e pass the controller 102 to a step 22 for controlling the operation of the pump 100 based on a DRY RUN condition. In comparison, if the torque comparison is greater than A %, then the DRY RUN or MIN FLOW condition module 102e pass the controller 102 to a step 24 for controlling the operation of the pump 100 based on a MIN FLOW condition.
In the case of a DRY RUN condition (if the torque comparison is less than A %), then the controller 102 has a DRY RUN condition module 102g that determines in the step 22 the status of the pump to be not O.K., and either adjusts the operation of the pump 100, or issues a warning of the DRY RUN condition, or both.
In particular, the DRY RUN condition module 102g can adjust the operation of the pump 100 by, for example, shutting down the pump. Unlike the RUNOUT condition, the DRY RUN condition module 102g cannot auto reset the pump 100. Instead, the user must re-start the pump. The DRY RUN condition module 102g will perform the DRY RUN fault routine after a predetermined protection delay to avoid nuisance trips caused by system transients. After performing step 22, the DRY RUN condition module 102g passes the controller 102 to the step 26 for performing the standard operation functionality when done.
In effect, the DRY RUN protection condition is declared if the ratio of the Act Motor Torque/Corrected BEP Torque<A %. A typical setting is 40–65% of BEP Torque, although the scope of the invention is not intended to be limited to any particular percentage.
The reaction of the controller 102 is programmed to either warn the user with no further action taken or fault and shutdown the pump 100. A protection delay period can be set by the user in the initial set-up prior to declaring the DRY RUN condition. However, the controller 102 cannot be set to automatically reset a fault condition. Once the pump has faulted it will remain off until re-started by the user.
In comparison, in the case of a MIN FLOW condition (if the torque comparison is greater than A %), then the controller 102 has a MIN FLOW condition module 102h that determines in the step 24 the status of the pump to be not O.K., and either adjusts the operation of the pump 100, or issues a warning of the MIN FLOW condition, or both.
In particular, the MIN FLOW condition module 102h can adjust the operation of the pump 100 by, for example, going to a minimum speed (MINSPEED) or shutting down the pump 100.
Similar to the RUNOUT condition, the MIN FLOW condition module 102h can auto reset the pump 100. The MIN FLOW condition module 102h will perform the MIN FLOW fault routine after a predetermined protection delay to avoid nuisance trips caused by system transients. After performing step 24, the MIN FLOW condition module 102h resumes the standard operation functionality in step 26 when done.
In effect, the MIN FLOW protection condition is declared if the ratio of the Act Motor Torque/Corrected BEP Torque<B % but >A %. A typical setting for the B % is 65–70% of BEP Torque, although the scope of the invention is not intended to be limited to any particular percentage.
The reaction of the controller 102 can be set to either warn the user with no further action taken, warn the user and slow down to a safe minimum operating speed (alarm & control) or fault and shutdown the unit. The protection delay period can be set prior to declaring a MIN FLOW condition. The controller 102 can also be set to automatically reset the alarm and control condition or fault to check if the system transient condition has cleared. The number of resets and time between resets is pre-set with default values in the initial set-up and adjustable by the user. Once the number of resets is exhausted, if the condition has not cleared, the pump will remain off until re-started by the user.
In
Accordingly, the invention comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth.
It will thus be seen that the objects set forth above, and those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense. For example, the scope of the invention is intended to include a method carried out using actual power values and speed corrected power at Best Efficiency Point (BEP). The invention has been shown and described herein using torque since many known Variable Frequency Drive (VFD) systems create accurate mathematical models of the motors being used to provide precise control over speed and torque.
In such an embodiment, power could then be inferred by these speed and torque values.
Number | Name | Date | Kind |
---|---|---|---|
4091617 | Cornell | May 1978 | A |
4462210 | Pollman et al. | Jul 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4490094 | Gibbs | Dec 1984 | A |
4707139 | Valenzky et al. | Nov 1987 | A |
4827197 | Giebeler | May 1989 | A |
5649893 | Inaniwa et al. | Jul 1997 | A |
5726881 | Inaniwa et al. | Mar 1998 | A |
5736823 | Nordby et al. | Apr 1998 | A |
5742522 | Yazici et al. | Apr 1998 | A |
5917688 | Kido et al. | Jun 1999 | A |
6501629 | Marriott | Dec 2002 | B1 |
6679820 | Barkus et al. | Jan 2004 | B1 |
6933693 | Schuchmann | Aug 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20050252205 A1 | Nov 2005 | US |