The present invention relates generally to vehicles powered by internal combustion engines operating under skip-fire control. More particularly the slip of a powertrain component, such as a torque converter, is minimized to improve fuel efficiency.
Fuel efficiency of internal combustion engines can be substantially improved by varying the displacement of the engine. This allows for the full torque to be available when required, yet can significantly reduce pumping losses and improve thermal efficiency by using a smaller displacement when full torque is not required. The most common method today of implementing a variable displacement engine is to deactivate a group of cylinders substantially simultaneously. In this approach the intake and exhaust valves associated with the deactivated cylinders are kept closed and no fuel is injected when it is desired to skip a combustion event. For example, an 8 cylinder variable displacement engine may deactivate half of the cylinders (i.e. 4 cylinders) so that it is operating using only the remaining 4 cylinders. Commercially available variable displacement engines available today typically support only two or at most three displacements.
Another engine control approach that varies the effective displacement of an engine is referred to as “skip-fire” engine control. In general, skip-fire engine control contemplates selectively skipping the firing of certain cylinders during selected firing opportunities. Thus, a particular cylinder may be fired during one engine cycle and then may be skipped during the next engine cycle and then selectively skipped or fired during the next. In this manner, even finer control of the effective engine displacement is possible. For example, firing every third cylinder in a 4 cylinder engine would provide an effective displacement of ⅓rd of the full engine displacement, which is a fractional displacement that is not obtainable by simply deactivating a set of cylinders.
U.S. Pat. No. 8,131,445 (which is incorporated herein by reference) teaches a continuously variable displacement engine using a skip-fire operational approach, which allows any fraction of the cylinders to be fired on average using individual cylinder deactivation. In a continuously variable displacement mode operated in skip-fire, the amount of torque delivered generally depends heavily on the firing fraction, or fraction of combustion events that are not skipped. In other skip-fire approaches a particular firing pattern or firing fraction may be selected from a set of available firing patterns or fractions.
Vehicles require a method to disengage the engine from the drive wheels and vary the relative rotation rates between the engine and wheels. Various mechanisms can be employed to satisfy these requirements. In particular, vehicles often use an automatic transmission (to adjust the relative engine/wheel rotation rates) coupled to a torque converter (to disengage the engine and wheels). The torque converter uses a fluid coupling to transfer power from the engine to the remainder of the powertrain. The torque converter also typically includes a lockup or torque converter clutch (TCC) that provides a direct mechanical coupling in parallel with the fluid coupling. Engaging the TCC allows the torque converter to operate in a locked or partially locked state. This improves the vehicle fuel efficiency, since less power is lost in the torque converter. Generally the fluid and mechanical coupling work cooperatively using a single control input, the pressure of the hydraulic fluid within the torque converter, to transfer torque from the engine to the remainder of the powertrain. When the vehicle is operating in a steady-state cruising mode, such as open road highway driving, torque converter slip values in the range of 20-80 revolutions per minute (RPM) are typical. This slip results in a power and associated fuel economy loss, which can be estimated by taking the ratio of the torque converter slip to the engine speed. For example, if the engine is operating at 2000 rpm and the torque converter slip is 40 rpm, the efficiency loss in the torque converter is approximately 2% (40/2000).
The torque converter fluid can only transmit torque when the torque converter is slipping, since a mismatch between the rotation speeds of the torque converter input and output shafts is required for the fluid to transmit torque. In the case of a non-slipping, locked-up torque converter, the engine torque is transmitted by the torque converter clutch and a rigid mechanical connection exists between the engine and remainder of the powertrain. While this condition is advantageous from a fuel economy standpoint, since no power is lost in the torque converter, modern vehicle control generally seeks to avoid this condition because of its propensity to cause excessive noise, vibration, and harshness (NVH).
A potential problem with skip-fire engine control is that the non-uniform firing pattern results in increased noise, vibration, and harshness (NVH). In particular a vehicle powertrain is a naturally lightly-damped oscillatory system that can oscillate in response to rapid changes in the engine output torque, such as may be generated by a firing pattern of a skip-fire controlled engine. Various control systems have been proposed that operate an engine so as to avoid exciting the natural oscillatory frequencies of the powertrain or increase the slip in a torque converter so that these frequencies are not transmitted through the torque converter. In particular the slip of the torque converter may be increased to dampen any undesirable vibrations originating from a transition in the number of activated cylinders. Increasing slip has the undesirable effect of decreasing fuel efficiency, which negates some of the benefits of skip-fire control. It would be desirable to reduce torque converter slippage in a vehicle using a skip-fire controlled engine to further improve vehicle fuel efficiency.
A variety of methods and devices for improving the fuel efficiency of a vehicle by locking up the torque converter clutch under certain operating conditions for an internal combustion engine operating under skip-fire control are described. In some aspects, the engine is operated to supply motive power to move the vehicle. The engine motive power is transferred through the torque converter, which is part of the vehicle powertrain. The torque converter clutch is locked-up under certain engine operating conditions. The torque converter clutch can be fully locked-up, with no slip, or substantially locked-up, with controlled slip, to avoid transmitting vibrations, as high-frequency changes in engine speed, to the rest of the powertrain. The engine conditions that allow torque converter clutch lock-up correspond to engine combustion event frequencies which do not overlap with powertrain resonances. Under such engine conditions acceptable NVH performance can be achieved despite use of a locked-up torque converter clutch.
The invention and the advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
In the drawings, like reference numerals are sometimes used to designate like structural elements. It should also be appreciated that the depictions in the figures are diagrammatic and not to scale.
The present invention describes methods and devices for improving the fuel efficiency of a vehicle by locking up the torque converter clutch under certain operating conditions for an internal combustion engine operating under skip-fire control.
Motive power is supplied by an internal combustion engine 102. The power is generated by combustion in a working chamber and transferred to a crankshaft (not shown in
Although the control system for a torque converter is shown in
The torque converter allows driveline components downstream of the torque converter (e.g., the transmission) to run at a different rotational speed than the torque converter input shaft 57, which is typically rotating at the engine rotational speed. The amount of slip permitted by the torque converter is typically regulated by adjusting a pulse-width modulated signal which controls solenoid valves that increase or decrease the hydraulic line pressure, which in turn mechanically affects how much the torque converter slips relative to the input shaft speed. When desired, the torque converter can be operated at or nearly at a locked-state by engaging the torque converter clutch. This allows little to no loss in efficiency from input to output of the torque converter, since the torque and rotational speeds of the input shaft 57 and output shaft 59 are substantially equal.
The amount of slip permitted by the torque converter (i.e., the difference between the rotational speed of the torque converter input shaft 57 and the torque converter output shaft 59) is sometimes referred to herein as the slip RPM. When the vehicle is idling and during transitions, the amount of slip permitted by the torque converter (e.g., the slip RPM) can be increased, thereby either totally or partially effectively disconnecting the engine from the rest of the powertrain. This altered torque transfer path decouples engine torque impulses presented to the torque converter from the remainder of the powertrain, which can help smooth vehicle operation by helping reduce vibrations. U.S. patent application Ser. No. 13/963,819, assigned to Tula Technology Inc. the assignee on the present application, describes various strategies for slipping the torque converter to damp vibrations originating from an engine operating under skip-fire control.
In practice, the amount and frequency of vibration generated during skip-fire operation of an engine tends to vary with the engine speed and the firing pattern or fraction. (The firing fraction is effectively the percentage of the possible cylinder firings that are actually fired). Some firing patterns and some firing fractions tend to have good vibration characteristics, while others tend to have less desirable vibration characteristics. Of course, there are a number of other operational factors that may affect vibration characteristics including engine speed, generated cylinder torque, transmission gear, etc. In general, the vibration characteristics of any particular vehicle operating condition can be characterized such that the vibrations associated with any particular set of skip-fire operating conditions can be reasonably predicted.
The assignee of the present application has described a number of skip-fire controllers that contemplate determining and then delivering a desired firing fraction. Examples of such controllers are described in U.S. patent application Ser. Nos. 13/654,244; 13/654,248; 13/744,134 and 61/682,065, which are all incorporated herein by reference. When the vehicle operating parameters, such as the firing fraction, transmission gear, engine speed, and cylinder torque are known, the torque converter slip can be controlled as a function of the vehicle operating parameters. In particular, certain vehicle operating parameters may generate conditions that produce little or no vibration at the first and second powertrain resonances. Under at least some of these vehicle operating parameters the torque converter clutch may be locked-up. Here locked-up may refer to both substantially locked-up, which means that the RPM slip is less than 5, 10, or 20 rpm or fully locked-up, which means that there is no RPM slip. Despite torque converter clutch lock-up, acceptable vehicle NVH is maintained because the powertrain resonances are not excited. Operation with skip-fire control allows more flexibility in determining the NVH signature of the engine than conventional all cylinder operation. The ability to select different firing fractions or firing patterns helps enable this invention by allowing combustion event frequency to be no longer solely dictated by the engine rotational speed and transmission gear setting.
Operation in the locked-up condition may be particularly appropriate for open highway cruising, where the vehicle may be operating at a substantially constant vehicle operating parameters over extended time periods. Often a vehicle cruising down an open highway will be operating in its highest transmission gear. In this case the tuned absorber resonance 208 (
Referring next to
The firing fraction 92 may also be delivered to a lock-up determining unit 97 that is responsible for determining vehicle parameters that are appropriate for operating with a locked-up torque converter clutch. Such operating parameters may include engine speed 87, per cylinder torque 89, and transmission gear 85. Additional vehicle operational characteristics, not shown in
The appropriate vehicle operating parameters suitable for torque converter clutch lock-up may be retrieved from lookup tables 99, calculated algorithmically, or determined in any other suitable manner. The lock-up determining unit 97 may output a signal 98 to TCC slip controller (e.g., solenoid driver module 56 shown in
Many skip-fire controllers utilize predefined firing patterns rather than explicitly designating a desired firing fraction. The torque converter lock-up control described above with respect to the use of different firing fractions is equally applicable to skip-fire controllers using predefined firing patterns (which typically each inherently correspond to a designated firing fraction) or other mechanisms to determine the timing of the firings.
Within the skip-fire controller, it is also possible to use signal processing techniques to eliminate known resonant frequencies from the torque signature, so that even at a mean firing percentage or fraction which would otherwise excite a resonant mode of the powertrain, it is possible to phase the individual skips and fires so as to avoid this. As one simple example, a 4-cylinder 4-stroke engine at 1200 RPM will normally fire cylinders at 40 Hz. If there is a powertrain resonance at 20 Hz, then firing every other cylinder will excite it. If, instead, the controller is configured to superimpose ⅓ and ⅙ firing intervals (i.e. in a 110100 repeating sequence, where “1” means a fire and “0” means a skip), the same mean torque is produced, but without the 20 Hz fundamental content. In a more comprehensive solution, real-time model-based signal processing which comprehends the known resonant frequency(ies) can influence the individual fire/skip decisions so as to continuously prevent generation of harmful frequency content even as engine speed and driver torque demand change. Combining this idea with a priori knowledge of the locked-up resonant frequencies and tuned-absorber modes can allow more aggressive TCC use than either approach alone.
Vehicle overall fuel efficiency is proportional the product of the efficiency of the various powertrain components. In particular, skip-fire control provides a method of operating an engine more efficiently over a wide range of engine speeds and operating loads. Many skip-fire control strategies focus on operating the engine at its most fuel efficient operating point. However, if at the most fuel efficient engine operating point there is slip in the torque converter, overall fuel efficiency can be further improved by locking the torque converter. Generally this is not a suitable option because torque converter lock-up would result in unacceptable NVH. However, as described above under some vehicle operating conditions it may be appropriate to operate with a locked-up torque converter clutch. A skip-fire engine control unit, such as that shown in
Although regulating slip has been described primarily in the context of regulating the slip of a torque converter clutch, it should be appreciated that similar results can be achieved by any mechanism (clutch or otherwise) that can controllably regulate the slippage of one segment of the drive train to another segment of the drive train. These might include the differential, a dual clutch transmission, a slipping clutch transmission or another drive train component.
Although only a few embodiments of the invention have been described in detail, it should be appreciated that the invention may be implemented in many other forms without departing from the spirit or scope of the invention. For example, there are several references to the term, “cylinder.” It should be understood that the term cylinder should be understood as broadly encompassing any suitable type of working chamber. The present invention may be useful in engines having a dual clutch transmission. The present invention may also be useful in engines that do not use skip-fire control. A continuously variable transmission may be particularly useful with the present invention because it allows remaining in a locked state over larger variations in output speed. Therefore, the present embodiments should be considered illustrative and not restrictive and the invention is not to be limited to the details given herein.
This application claims priority of Provisional Application No. 62/007,746 filed Jun. 4, 2014. This application is also a Continuation-in-part of U.S. application Ser. No. 13/963,819 filed Aug. 9, 2013, which claims priority of Provisional Application No. 61/682,553 filed Aug. 13, 2012. Each of these priority applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4434767 | Kohama et al. | Mar 1984 | A |
4489695 | Kohama et al. | Dec 1984 | A |
4509488 | Forster et al. | Apr 1985 | A |
4921064 | Wazaki et al. | May 1990 | A |
5374224 | Huffmaster et al. | Dec 1994 | A |
5377631 | Schechter | Jan 1995 | A |
5540633 | Yamanaka et al. | Jul 1996 | A |
5785628 | Kamada | Jul 1998 | A |
6158411 | Morikawa | Dec 2000 | A |
6619258 | McKay et al. | Sep 2003 | B2 |
6843752 | Bolander | Jan 2005 | B2 |
7032545 | Lewis et al. | Apr 2006 | B2 |
7032581 | Gibson et al. | Apr 2006 | B2 |
7063062 | Lewis et al. | Jun 2006 | B2 |
7066136 | Ogiso | Jun 2006 | B2 |
7086386 | Doering | Aug 2006 | B2 |
7179199 | Kushiyama et al. | Feb 2007 | B2 |
7231907 | Bolander et al. | Jun 2007 | B2 |
7288046 | Boone et al. | Oct 2007 | B2 |
7503312 | Surnilla et al. | Mar 2009 | B2 |
7509201 | Bolander et al. | Mar 2009 | B2 |
7532972 | Kolmanovsky et al. | May 2009 | B2 |
7577511 | Tripathi et al. | Aug 2009 | B1 |
7651441 | Maguire et al. | Jan 2010 | B2 |
7785230 | Gibson et al. | Aug 2010 | B2 |
7849835 | Tripathi et al. | Dec 2010 | B2 |
7886715 | Tripathi et al. | Feb 2011 | B2 |
7930087 | Gibson et al. | Apr 2011 | B2 |
7941994 | Surnilla et al. | May 2011 | B2 |
7954474 | Tripathi et al. | Jun 2011 | B2 |
8052575 | Albertson et al. | Nov 2011 | B2 |
8099224 | Tripathi et al. | Jan 2012 | B2 |
8131445 | Tripathi et al. | Mar 2012 | B2 |
8131447 | Tripathi et al. | Mar 2012 | B2 |
20050216132 | Masters et al. | Sep 2005 | A1 |
20070131196 | Gibson | Jun 2007 | A1 |
20070243971 | Brevick | Oct 2007 | A1 |
20080262712 | Duty et al. | Oct 2008 | A1 |
20080288146 | Beechie | Nov 2008 | A1 |
20100050993 | Zhao et al. | Mar 2010 | A1 |
20110030657 | Tripathi et al. | Feb 2011 | A1 |
20110288734 | Phillips et al. | Nov 2011 | A1 |
20140041626 | Wilcutts et al. | Feb 2014 | A1 |
Entry |
---|
International Search Report dated Feb. 5, 2014 from International Application No. PCT/US2013/054417. |
Written Opinion dated Feb. 5, 2014 from International Application No. PCT/US2013/054417. |
Number | Date | Country | |
---|---|---|---|
20150232103 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
62007746 | Jun 2014 | US | |
61682553 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13963819 | Aug 2013 | US |
Child | 14704630 | US |