The present invention relates generally to hydraulic torque converters, and more particularly to hydraulic torque converters with lock-up clutches and dampers.
In
A piston 36 and a piston hub 38 of lock-up clutch 20 may move axially on an outer hub 40 of turbine hub 28 according to the controlled pressure difference between regions 42, 44 on either axial side of piston 36. When piston 36 is not contacting cover 12 at a surface 46, torque is transferred from the engine to output shaft 32 through the hydraulic fluid in torque converter 10. When piston 36 is contacting cover 12 at surface 46, torque is transferred from the engine to output shaft 32 through springs 48 in damper 22. U.S. Pat. No. 5,385,222 is hereby incorporated by reference herein.
The present invention provides a torque converter comprising a turbine, an output shaft, and a damper having at least one cover plate radially fixed to the turbine, and a flange driven by the damper and non-rotatably connected to the output shaft, the flange having an axially extending surface centering the cover plate.
The present invention advantageously permits the turbine to be centered using the flange.
One embodiment of the present invention is shown with respect to the drawings in which:
Lock-up clutch 120 includes a piston 136, a clutch plate 166, and cover plates 150, 152. Cover plates 150, 152 are non-rotatably connected to clutch plate 166 with, for example, splines 168. Piston 136 may move axially on a cover flange 170 according to a controlled pressure difference between regions 172, 174 on either axial side of piston 136. Lock-up clutch 120 is open when piston 136 is positioned axially towards the turbine 116. Lock-up clutch 120 is closed when piston 136 is positioned axially towards engine to engage friction surfaces 176, 178, 180, 182 on clutch plate 166, cover 112, and piston 136.
Damper 122 includes cover plates 150, 152 retaining an annular arrangement of springs 184. Springs 184 contact a flange 186 non-rotatably connected to an output shaft 188 with, for example, splines 190. Output shaft 188 can be the input shaft of a transmission, for example.
Cover flange 170 is attached rigidly to cover 112. Adjacent to cover flange 170 are seals 192, 194 to seal output shaft 188 and piston 136. Cover 112 is centered in an engine crankshaft with a cover pilot 195 extended from cover 112. Cover flange 170 is centered by cover 112. Flange 186 is centered in cover flange 170 with a bearing 206. Cover plate 150 and turbine 116 are centered on flange 186 at an axially extending surface 196. Output shaft 188 is centered in flange 186. A thrust bearing 198 is centered in turbine 116 at a tubular surface 200.
Engine torque enters the torque converter 110 through a stud 202. Torque from stud 202 is transmitted to cover 112. Torque from cover 112 can be transmitted to either impeller 114 or clutch plate 166, depending on whether lock-up clutch 120 is open or closed.
When lock-up clutch 120 is open, torque from cover 112 is transmitted to impeller 114. Impeller 114 transmits torque to turbine 116 through the oil in torque converter 110. Turbine 116 transmits torque to cover plate 150. Cover plate 150 transmits torque into flange 186 through springs 184. If the torque exceeds the capacity of springs 184, flange 186 will directly contact cover plate 150 at area 204. Flange 186 directly transmits torque into output shaft 188. Flange 186 transmits axial thrust from turbine 116 to bearing 206 supported on cover flange 192. Flange 186 has a U-shaped section with one leg having axially extending surface 196 and the other having splines for interacting with splines 190.
When lock-up clutch 120 is closed, torque from cover 112 is transmitted to clutch plate 166. Clutch plate 166 transmits torque into cover plate 150. Cover plate 150 has additional inertia of turbine 116. Cover plate 150 transmits torque into flange 186 through springs 184. If torque exceeds the capacity of springs 184, flange 186 will directly contact cover plate 150 at area 204. Flange 186 directly transmits torque into output shaft 188.
By mounting flange 186 on output shaft 188 and contacting flange 186 to springs 184 in damper 122, the use of hubs 38, 40 in the prior art shown in
Priority to U.S. Provisional Application Ser. No. 60/964,855, filed Aug. 15, 2007, German Patent Application No. 10 2006 056 299.2, filed Nov. 29, 2006, U.S. Provisional Patent Application Ser. No. 60/874,104, filed Dec. 11, 2006, German Patent Application No. 10 2006 061 541.7, filed Dec. 27, 2006, German Patent Application No. 10 2006 061 553.0, filed Dec. 27, 2006, German Patent Application No. 10 2006 061 552.2, filed Dec. 27, 2006, U.S. Provisional Patent Application Ser. No. 60/934,235, filed Jun. 12, 2007, and U.S. Provisional Patent Application Ser. No. 60/962,772, filed Jul. 31, 2007, is claimed.
Number | Date | Country | |
---|---|---|---|
60964855 | Aug 2007 | US |