The present disclosure relates generally to torque converters and more specifically to lock-up clutch pistons.
U.S. Publication No. 2012/0011838 discloses a plurality of hub seal assembly designs.
A piston assembly for a torque converter is provided. The piston assembly includes a seal assembly including an inner ring configured for fixing to an outer circumferential surface of a transmission input shaft. The seal assembly also includes an outer ring on an outer circumferential surface of the inner ring. The piston assembly also includes a lock-up clutch piston including a radially inner end engaging the seal assembly.
A method of forming a piston assembly for a torque converter is also provided. The method includes providing an outer ring on an outer circumferential surface of an inner ring to form a seal assembly configured for fixing to an outer circumferential surface of a transmission input shaft and connecting the seal assembly to a radially inner end of a lock-up clutch piston.
The present invention is described below by reference to the following drawings, in which:
The disclosure provides a dynamic seal, for example a split teflon ring with a groove for receiving an o-ring surrounding its outer circumference. The o-ring may counteract problems of seal growth due to temperature and/or misalignment that lead to high flow and delayed clutch response. In another embodiment, a groove for receiving the seal may be formed directly on the transmission input shaft.
Damper 24 includes a centrifugal pendulum vibration absorber 26 riveted to turbine 20 by a first cover plate 28. Damper 24 further includes a second cover plate 30 riveted to first cover plate 28 by a rivet 31, with cover plates 28, 30 supporting a plurality of circumferentially spaced radially inner set of springs 32 axially therebetween. Cover plates 28, 30 transfer torque from turbine 20 to a drive flange 34 axially between cover plates 28, 30 via springs 32. Drive flange 34 in turn drives a transmission input shaft 36. At a radially outer end thereof, second cover plate 30 includes a spring retainer 38 formed by a rounded outer circumference 40 of cover plate 30 and a retainer plate 42 riveted to second cover plate 30 by rivet 31. Retainer plate 42 includes a plurality of circumferentially spaced outer tabs 44 at the radially outer end thereof that define circumferentially extending spaces, each for receiving one of a plurality of circumferentially spaced radially outer set of springs 46 of damper 24. Springs 46 in turn drivingly engage a clutch plate 48 via circumferentially spaced outer tabs 50 of clutch plate 48, each for extending into one of the spaces circumferentially between springs 46.
At a radially inner end thereof, clutch plate 48 includes friction material 52, 54 on axial sides thereof. Front cover side friction material 52 is arranged for engaging an inner surface of front cover 12 and rear cover side friction material 54 is arranged for engaging a radial outer end of a piston 56. Piston 56 and clutch plate 48 form a lockup clutch 58 for drivingly coupling turbine 20 to front cover 12 via damper 24. Fluid pressure differences between a front cover side 60 of piston 56 and a rear cover side 62 of piston 56 control whether clutch plate 48 engages or is disengaged from front cover 12 via piston 56.
A seal assembly 64 in accordance with an embodiment of the present invention is positioned at a radially inner end 66 of piston 56 such that radially inner end 66 of piston engages seal assembly 64. Seal assembly 64 is configured for sealingly connecting piston 56 to an outer circumferential surface 68 of transmission input shaft 36. A seal retaining plate 70 fixed to rear cover side 62 of piston 56 helps piston 56 axially retain seal assembly 64 between seal retaining plate 70 and a radially inner end 66 of piston 56. In other words, seal assembly 64 is forced axially into rear cover side 62 of piston 56 by seal retaining plate 70. Together, seal assembly 64, piston 56 and seal retaining pate 70 form a piston assembly 75.
Inner ring 72 includes a cylindrically shaped axially extending inner circumferential surface 82 for sealingly contacting outer circumferential surface 68 of transmission input shaft 36 and two radially extending surfaces 84, 86 extending radially from inner circumferential surface 82 to outer circumferential surface 78. Front cover side radially extending surface 84 sealingly axially contacts rear cover side 62 of piston 56 at a radially inner thinned section 88 of piston 56 and rear cover side radially extending surface 86 sealingly axially contacts a front cover side of seal retaining plate 70.
Torque converter 10 may be assembled by installing outer ring 74 on outer circumferential surface 78 of inner ring 72 in circumferentially extending groove 76 to form seal assembly 64, then aligning seal assembly 64 in a step 90 of piston 56, which defined by thinned section 88 and radially adjacent section 92 that is thicker than thinned section 88. Seal retaining plate 70 may then be fixed to rear cover side 62 of piston 56 such that seal assembly 64 is axially sandwiched between piston 56 and seal retaining plate 70. Transmission input shaft 36 may then be inserted into seal assembly 64.
In the preceding specification, the invention has been described with reference to specific exemplary embodiments and examples thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative manner rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4721312 | Hornberger | Jan 1988 | A |
20080156129 | Degler | Jul 2008 | A1 |
20080191422 | Schoenek | Aug 2008 | A1 |
20090257699 | Hosaka et al. | Oct 2009 | A1 |
20120011838 | Lindemann | Jan 2012 | A1 |
20120266589 | Avins | Oct 2012 | A1 |
20130319221 | Steinberger | Dec 2013 | A1 |
20140345997 | Gerdeman | Nov 2014 | A1 |
20150152949 | Avins | Jun 2015 | A1 |
20150247538 | Cerreta | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
1288537 | Jan 2007 | EP |
Entry |
---|
International Search Report and Written Opinion for Corresponding PCT Application. |
Number | Date | Country | |
---|---|---|---|
20160305550 A1 | Oct 2016 | US |