The present application claims priority under 35 U.S.C. §119 to Japanese Patent Applications No. 2006-306897 filed on Nov. 13, 2006, No. 2006-306898 filed on Nov. 13, 2006 and No. 2007-184364 filed on Jul. 13, 2007. The contents of the applications are incorporated herein by reference in their entirety.
1. Field of the Invention
This invention relates to a torque distributing apparatus that controls torque distributing ratio to first and second output shafts from a power source.
2. Discussion of the Background
Japanese patent No. 3247484, for example, discloses a torque distributing apparatus that has a differential gear unit, a planetary gear set and a motor. The differential gear unit transmits an input torque to first and second output shafts with allowing differential rotation between the output shafts. The planetary gear set is arranged between the first and second output shafts. The motor is connected with the planetary gear set. When the motor drives the planetary gear set, the torque distributing apparatus provides differential rotation between the first and second output shafts. The motor controls torque to the planetary gear set so as to control torque distributing ratio to the first and second output shafts from a power source, e.g. an engine. In the torque distributing apparatus, the planetary gear set has planetary gears that are carried by a planetary carrier and engage with a sun gear and a ring gear, and one of the sun and ring gears is connected with the motor as an input element of the motor torque. A speed change gear set is arranged beside the planetary gear set in order to compensate its gear ratio. The speed change gear set is the same construction of the planetary gear set, wherein the both sun gears or ring gears are connected in no relative rotation and another gear of the speed change gear set is fixed on the nonrotatable portion.
The prior art, however, has difficulty to gain a large reduction gear ratio of the planetary gear set. Thus it is necessary for sufficient torque providing the differential rotation to increase the motor output or an additional reduction gear set. In addition, since the planetary gears, sun gear and ring gear are arranged on the same plain, it is complicated to support the planetary carrier, sun gear and ring gear. Therefore the prior art has a large size and complicated assembling operation.
Another prior art, Japanese patent application publication No. 2006-112474 discloses the torque distributing apparatus whose controlling motor is disposed outside of a housing of the planetary gear set. The motor is connected to the planetary gear set via a reduction gear set so as to gain the sufficient torque providing the differential rotation. However the prior art becomes large because of the reduction gear set. If the reduction gear set is downsized, the motor becomes large to provide the sufficient driving torque. These are trade-off relation. In addition, since the motor projects from the housing, the torque distributing apparatus has weight imbalance and may interfere with another parts installed to underbody of a vehicle. Further, if the reduction gear set with large reduction gear ratio in order to downsize the motor, when one wheel slips during driving on μ-split road and there happens large differential rotation between the wheels, over speed of the motor may happen.
According to the invention, a torque distributing apparatus comprises a differential gear unit transmitting an input torque to first and second output shafts with allowing a differential rotation between the first and second output shafts, a planetary gear set arranged between the first and second output shafts, a motor driving the planetary gear set, and a speed change gear set compensating a speed change ratio of the planetary gear set. The planetary gear set is arranged in coaxial outward of the first output shaft, and has a plurality of planetary gears, a planetary carrier carrying the planetary gears revolvably and rotatably, a first gear engaging with the planetary gears and a second gear engaging with the planetary gears, wherein the planetary carrier is an input element of a torque of the motor. The speed change gear set is arranged in coaxial outward of the first output shaft, and has a plurality of planetary gears, a planetary carrier carrying the planetary gears rotatably, a third gear engaging with the planetary gears and a forth gear engaging with the planetary gears, wherein the planetary carrier is fixed to a nonrotatable portion. The first gear of the planetary gear set is integrated with the third gear of the speed change gear set. One of the second gear and the forth gear is connected with the first output shaft in no relative rotation, and the other is connected with the differential gear unit. The motor is arranged in coaxial outward of the planetary gear set and the speed change gear set.
According to the invention, a torque distributing apparatus comprises a differential gear unit transmitting an input torque to first and second output shafts with allowing a differential rotation between the first and second output shafts, a planetary gear set arranged between the first and second output shafts, a motor driving the planetary gear set, and a speed change gear set compensating a speed change ratio of the planetary gear set. The planetary gear set is arranged in coaxial outward of the first output shaft, and has a plurality of planetary gears with first and second pinions whose diameters of pitch circles are different each other, a planetary carrier carrying the planetary gears revolvably and rotatably, a first gear engaging with the first pinions and a second gear engaging with the second pinions, wherein the planetary carrier is an input element of a torque of the motor. The speed change gear set is arranged in coaxial outward of the first output shaft, and has a plurality of planetary gears with third and forth pinions whose diameter ratio of pitch circles equals to that of the first and second pinions respectively, a planetary carrier carrying the planetary gears rotatably, a third gear engaging with the third pinions and a forth gear engaging with the forth pinions, wherein the planetary carrier is fixed to a nonrotatable portion. The first gear of the planetary gear set is integrated with the third gear of the speed change gear set. One of the second gear and the forth gear is connected with the first output shaft in no relative rotation, and the other is connected with the differential gear unit.
Various objects, features and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description of the preferred embodiments when considered in connection with the accompanying drawings, in which:
A first embodiment related to the present invention will be described with reference to
As shown in
The differential gear unit 14 has an approximately cylindrical differential case 17 which is rotatably supported by bearings 18a and 18b about the axes of the first and second output shafts 12L, 12R. Ends 12La and 12Ra of the first and second output shafts 12L and 12R exist in the differential case 17. The differential case 17 has a ring gear 19 on its inner surface and a bevel gear 20 on its outer surface. The differential case 17 comprises a first part 17a supported by the bearing 18a and a second part 17b supported by the bearing 18b. A bolt fixes the first part 17a, the second part 17b and the bevel gear 20. The bevel gear 20 engages with a drive pinion 21 at the end of the input shaft 13. In the differential case 17, a sun gear 22 is put on the end 12La of the first output shaft 12L, and plural pairs of planetary gears 23 are arranged between the sun gear 22 and the ring gear 19 on the inner surface of the differential case 17. Each pair of the planetary gears 23 comprises a first planetary gear 23a engaging with the ring gear 19 and a second planetary gear 23b engaging with the sun gear 22. Respective first and second planetary gears 23a and 23b are engaged each other, and are supported by a planetary carrier 24 rotatably and revolvaly. The planetary carrier 24 is connected with the end 12Ra of the second output shaft 12R in no relative rotation.
Thus the torque of the propeller shaft 6 is transmitted to the differential case 17 through the torque coupling 7 and the drive pinion 21. The sun gear 22 and the planetary carrier 24 are rotated with the differential case 17 via the pairs of the planetary gears 23 so as to transmit the torque to the first and second output shafts 12L and 12R, the rear axles 9L and 9R and the rear wheels 10L and 10R. On the other hand, for example, when the vehicle turns and the differential rotation is provided between the rear wheels 10L, 10R, respective first and second planetary gears 23a, 23b rotate and revolve so that the differential gear unit 14 allows the differential rotation between the first and second output shafts 12L, 12R.
The torque distributing apparatus 8 has a torque distributor 30 which controls torque distributing ratio to the right and left rear wheels 10R and 10L. As shown in
As shown in
The planetary carrier 45 has a cylindrical part 45a where the first output shaft 12L is inserted into. The planetary carrier 45 is supported by a ball bearing 48a arranged on the inward of the second housing 16b and a needle bearing 49a arranged on the first output shaft at the cylindrical part 45a, so as to relatively rotate about the first output shaft 12L. Respective planetary gears 44 are rotatably supported by the planetary carrier 45 where respective second pinions 43 are arranged beside the cylindrical part 45a. The planetary carrier 45 also has a ring part 45b arranged in coaxial outward of the first output shaft 12L. The ring part 45b has outer teeth 50 on its outer surface and engages with the motor 32. Thus the planetary carrier 45 is an input element of the motor torque. The second sun gear 47 is connected with the first output shaft 12L in no relative rotation by spline-fitting. The first sun gear 46 is connected to the planetary carrier 24 of the differential gear unit 14 via the speed change gear set 51. In the case of lack of the speed change gear set 51, since the planetary gear set 31 has predetermined gear ratio according to engagement of respective gears, the planetary carrier 45 as the input element of the motor torque rotates even without the differential rotation between the first and second output shafts 12L, 12R. Such rotation may supply a load to the motor 32.
The first embodiment comprises the speed change gear set 51 interposed between the planetary gear set 31 and the differential gear unit 14 at closer side of one end 12La of the first output shaft 12L in order to compensate the speed change ratio of the planetary gear set 31. In detail, the speed change gear set 51 is arranged between the first sun gear 46 of the planetary gear set 31 and the planetary carrier 24 of the differential gear unit 14. Thus when the both rear axles 9L, 9R rotate in the same speed and the same direction (no differential rotation between the first and second output shafts 12L, 12R), no rotation is provided to the motor 32.
In detail, the speed change gear set 51 comprises plural planetary gears 54. Each planetary gear 54 has a third pinion 52 and a forth pinion 53 which are nonrotatably integrated. The diameters of the pitch circles of the third pinion 52 and the forth pinion 53 equal to those of the first pinion 42 and the second pinion 43 of the planetary gear set 31 respectively. Thus the diameter ratio of the pitch circles of the third pinion 52 and the forth pinion 53 equals to that of the first pinion 42 and the second pinion 43. The speed change gear set 51 also comprises a ring-like planetary carrier 55. The planetary carrier 55 is fixed to the inward of the housing 11 (second housing 16b) as the nonrotatable part and is arranged beside the ring part 45b of the planetary carrier 45 of the planetary gear set 31. A ball bearing 48b intervenes between the planetary carrier 55 and the ring part 45b so as to support the ring part 45b of the planetary carrier 45. A spindle 54a of each planetary gear 54 extends along its rotational axis and is rotatably supported by bores 55a and 55b of the planetary carrier 55 and the wall 15 of the housing 11. The speed change gear set 51 further comprises a third sun gear 56 and a forth sun gear 57 which are coaxially arranged on the first output shaft 12L. The third sun gear 56 engages with the third pinions 52 and the forth sun gear 57 engages with the forth pinions 53. The third sun gear 56 is nonrotatably integrated with the first sun gear 46 of the planetary gear set 31. The forth sun gear 57 is connected to the planetary carrier 24 of the differential gear unit 14 in no relative rotation. Therefore the speed change gear set 51 has similar construction of the planetary gear set 31, however its planetary carrier 55 is fixed to the ronrotatable part of the housing 11.
The first sun gear 46 and the third sun gear 56 are made from the same cylindrical sleeve 58 and have the same shapes of teeth on the sleeve 58. The forth sun gear 57 has the cylindrical part 57a which is connected with the planetary carrier 24 of the differential gear unit 14 in no relative rotation. The forth sun gear 57 is rotatably supported by a needle bearing 49b on the first output shaft 12L and a ball bearing 48c on the housing 11 (wall 15).
The motor 32 is a brushless motor with a hollow rotor 32a, and is installed into the housing 11 (second housing 16b). The motor 32 is coaxially arranged to the first output shaft 12L in the radial outward of the planetary gear set 31 and the speed change gear set 51. In detail, a stator 32b of the motor 32 is fixed on the inner surface of the second housing 16b and the rotor 32a is rotatably supported in the inward of the stator 32b. The motor 32 extends axially and surrounds the planetary gear set 31 and the speed change gear set 51. The ring part 45b of the planetary carrier 45 is spline-fitted into the rotor 32a so as to be connected with the motor 32.
During no differential rotation between the first output shaft 12L and the second output shaft 12R, the torque distributor 30 provides no rotation to the planetary carrier 45 of the planetary gear set 31 connected with the motor 32. On the other hand, when the motor 32 drives the planetary carrier 45, differential rotation is provided between the first and second output shafts 12L, 12R, namely between the both rear axles 9L, 9R. Controlling the motor torque to the planetary gear set 31 provides the both rear axles 9R, 9L with variably distributed torque which is input from the input shaft 13.
According to the first embodiment, the motor 32 is the brushless motor with the hollow rotor 32a which is coaxially arranged in radial outward of the first output shaft 12L, the planetary gear set 31 and the speed change gear set 51 in the housing 11 (second housing 16b). The ring part 45b of the planetary carrier 45 is spline-fitted into the rotor 32a of the motor 32. Such construction provides large diameter of the motor 32, although the apparatus does not become larger. Thus the motor 32 is able to supply large torque without reduction gear so as to be downsized. Thus the torque distributing apparatus 8 is downsized. Because of no reduction gear, when the vehicle runs on the μ-split road and one wheel slips, over speed of the motor 32 would not happen, so as gain a liability. In Addition, because of coaxial mount of the motor 32, the housing 11 has no overhang so as to easily prevent from interference with an underbody of the vehicle or the other parts. Thus the torque distributing apparatus 8 is easily installed to the vehicle. Moreover, the motor 32 is arranged in the housing 11 (second housing 16b) so as to be cooled down by the lubricant oil. In radial outward of the planetary gear set 31 and the speed change gear set 51, because the lubricant oil is stirred by the planetary gear set 31 and the speed change gear set 51 so as to circulate, forced-feed circulation cooling is provided. As a result, heat of the motor 32 is reduced so that high liability is provided.
In the first embodiment, the planetary gear set 31 has plural planetary gears 44 whose respective first and second pinions 42, 43 are nonrotatably connected, wherein the diameter of the pitch circle of the first pinion 42 is different from that of the second pinion 43. Also, the speed change gear set 51 has plural planetary gears 54 whose respective third and forth pinions 52, 53 are nonrotatably connected, wherein the diameter of the pitch circle of the third pinion 52 equals to that of the first pinion 42 and that of the forth pinion 53 equals to that of the second pinion 43. Because so-called two pinion gears are used for the planetary gears 44 and 54, the planetary gear set 31 and the speed change gear set 51 provide high speed change ratios and sufficient engagements between respective gears. Therefore the motor 32 is able to supply sufficient torque to provide the differential rotation without more power or additional gear set, so as to be downsized. Therefore the torque distributing apparatus 8 is downsized.
A second embodiment will be described with reference to
As shown in
The motor 132 has a motor room 67 between the rotor 132a and the stator 132b. The motor room 67 is communicatively connected to a gear room 68 where the planetary gear set 31 and the speed change gear set 51 are installed in. In detail, the rotor 132a of the motor 132 has plural through holes 69 (69a and 69b), wherein the through holes 69a are located at the outward of the planetary gear set 31. The through holes 69b are located not at the outward of the planetary gear set 31 but at the outward between the planetary gear set 31 and the speed change gear set 51. Thus the motor room 67 is communicatively connected to the gear room 68 so that the lubricant oil in the gear room 68 is stirred by the planetary gear set 31 (and the speed change gear set 51) so as to flow into the motor room 67 and cool down the motor 132 sufficiently.
Negative pressure is provided between the planetary gear set 31 and the speed change gear set 51 where respective through holes 69b are located at. Thus, as shown in
According to the second embodiment, the motor room 67 is communicatively connected to the gear room 68. The lubricant oil is stirred by the planetary gear set 31 (and the speed change gear set 51) so as to flow into the motor room 67 from the gear room 68. Thus the heat portion of the stator 132b of the motor 132 directly contacts with the lubricant oil as refrigerant so as to be cooled down sufficiently.
The rotor 132a has plural through holes 69 communicatively connecting its inward to outward. Therefore centrifugal force helps the lubricant oil to flow into the motor room 67. The rotor 132 has plural through holes 69a in the outward of the planetary gear set 31. Thus the lubricant oil is sufficiently supplied to the motor room 67 by revolution of the planetary gears 44. The rotor 132a has plural through holes 69b between the planetary gear set 31 and the speed change gear set 51 where the negative pressure is provided. Thus the lubricant oil sufficiently returns from the motor room 67 to the gear room 68. Therefore the motor 132 is sufficiently cooled down.
A third embodiment will be described with reference to
As shown in
As shown in
As shown in
As shown in
In detail, as shown in
The planetary carrier 255 has four openings 287 where respective third and forth pinions 252, 253 protrude through (see
In the torque distributor 230 of the third embodiment described hereinbefore, during no differential rotation between the first output shaft 12L and the second output shaft 12R, no rotation is provided to the planetary carrier 245 connected with the motor 232. On the other hand, when the motor 232 drives the planetary carrier 245, differential rotation is provided between the first and second output shafts 12L, 12R, namely between the both rear axles 9L, 9R. Controlling the motor torque to the planetary gear set 231 provides the both rear axles 9R, 9L with variably distributed torque which is input from the input shaft 13.
In the third embodiment, the planetary gear set 231 has plural planetary gears 244 whose respective first and second pinions 242, 243 are nonrotatably connected, wherein the diameter of the pitch circle of the first pinion 242 is different from that of the second pinion 243. Also, the speed change gear set 251 has plural planetary gears 254 whose respective third and forth pinions 252, 253 are nonrotatably connected, wherein the diameter of the pitch circle of the third pinion 252 equals to that of the first pinion 242 and that of the forth pinion 253 equals to that of the second pinion 243. Because so-called two pinion gears are used for the planetary gears 244 and 254, the planetary gear set 231 and the speed change gear set 251 provide high speed change ratios and sufficient engagements between respective gears. Therefore the motor 232 is able to supply sufficient torque to provide the differential rotation without more power or additional gear set, so as to be downsized. Therefore the torque distributing apparatus 8 is downsized.
The first, second, third and forth pinions 242, 243, 252 and 253 respectively engage with the first, second, third and forth gears 246, 247, 256 and 257 which are all ring gears. Such engagements are provided by internal gears and external gears so as to minimize the contact stress between the gears. Thus there is reduced the required strength for the planetary gears 244 and 254 so that the planetary gears 244, 254 are able to be downsized, whereby the torque distributing apparatus 8 is also able to be downsized. Additionally, because all gears engaging with the planetary gears 244, 254 are ring gears, respective ring gears 246, 247, 256, 257 and planetary carriers 245, 255 are sufficiently supported by simple constructions. Therefore the torque distributing apparatus 8 is downsized and it is easy for the planetary gear set 231 and the speed change gear set 251 to be assembled.
The planetary carriers 245 and 255 are the cylinders with bottoms. Respective circumferential walls 276, 286 of the planetary carriers 245, 255 have plural numbers of the openings 277, 287 corresponding to the number of the planetary gears 244, 254. Respective planetary gears 244, 254 are rotatably served in respective planetary carriers 245, 255 where respective teeth of the first, second, third and forth pinions 242, 243, 252 and 253 protrude through the respective openings 277, 287. Such planetary carriers 245, 255 provide simple constructions sufficiently supporting respective planetary gears 244, 254 so as to be downsized. Thus the torque distributing apparatus 8 is downsized. Additionally, respective planetary gears 244, 254 and planetary carriers 245, 255 are united so as to be easily assembled into the planetary gear set 231 and the speed change gear set 251.
Respective planetary carriers 245, 255 have the holes 270a, 270b, 280a and 280b around their rotational axes, and are supported by inserting the first output shaft 12L through the holes 270a, 270b, 280a, 280b. Such simple construction sufficiently supports the planetary carriers 245, 255 without collision with the ring gears 246, 247, 256, 257 so as to downsize the torque distributing apparatus 8.
Respective planetary carriers 245, 255 have the flanges 279, 289 on their circumferential walls 276, 286. The flanges 279, 289 are located between the first pinion 242/third pinion 252 and second pinion 243/forth pinion 253. Respective flanges 279, 289 fix respective planetary carriers 245, 255 to the nonrotational parts (motor 232 and housing 11). Such flanges 279, 289 provide collision free between the planetary carriers 245, 255 and the nonrotational parts. That makes the support constructions of the second ring gear 247 and forth ring gear 257 simple so as to downsize the torque distributing apparatus 8.
The motor 232 is the brushless motor which has the hollow rotor 232a. The motor 232 is placed in radial outward of the planetary gear set 231 coaxially. Such construction provides large diameter of the motor 232, although the torque distributing apparatus 8 does not become larger. Thus the motor is able to supply large torque without reduction gear so as to be downsized. Therefore the torque distributing apparatus 8 is downsized. Because of no reduction gear, when the vehicle runs on the μ-split road and one wheel slips, over speed of the motor 232 would not happen, so as gain a liability. In Addition, because of coaxial mount of the motor 232, the housing 11 has no overhang so as to easily prevent from interference with an underbody of the vehicle or the other parts. Thus the torque distributing apparatus 8 is easily installed to the vehicle.
The third embodiment can be modified. Although, in the third embodiment, the motor 232 is a brushless motor which has the rotor 232a surrounding the planetary gear set 231 coaxially, the coaxial arrangement is not needed and the other type of motor, e.g. brush motor, can be used.
One modification of the third embodiment will be described with reference to
The planetary carrier 245 of the third embodiment has the both bottoms 278a, 278b with the bores 279a, 279b. Respective bores 279, 279b face each other and loosely fit respective spindles 244a of the planetary gears 244, so that the planetary gears 244 are rotatably supported by the planetary carrier 245 (see
A forth embodiment will be described with reference to
As shown in
The planetary carrier 345 of the planetary gear set 331 rotates about the first output shaft 12L as its rotational axis, and is spline-fitted into the rotor 332a. Namely the planetary gear set 331 is driven by the motor 332 through the engagement between the inner surface of the rotor 332a and the outer teeth of the flange 379 of the planetary carrier 345. Respective planetary gears 344 are rotatably supported by the planetary carrier 345 so as to revolve about the first output shaft 12L.
The speed change gear set 351 has the planetary gears 354 and the planetary carrier 355, similar to the planetary gear set 331. The planetary carrier 355 rotates about the first output shaft 12L as its rotational axis, and is spline-fitted into the housing 11 (second housing 16b) via the outer teeth of the flange 389.
The second ring gear 347 is connected with the planetary carrier 24 of the differential gear unit 14 (see
As shown in
Respective embodiments can be modified as described hereinafter.
Although the first to forth gears 46 (246, 346), 47 (247, 347), 56 (256, 356), 57 (257, 357) are all sun gears in the first and second embodiments and all ring gears in the third and forth embodiments as the first to forth gears, combination of sun gears and ring gears may be applied.
In the forth embodiment, the second ring gear 247 may have through holes for more smooth flow of the lubricant oil.
Just for circulating the lubricant oil, the through holes of second and forth embodiments may be applied to the apparatus which does not have the speed change gear set.
At least one of the parts of the planetary gear set may have fins to stir the lubricant oil. For example, as shown in
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is thereby to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2006-306897 | Nov 2006 | JP | national |
2006-306898 | Nov 2006 | JP | national |
2007-184364 | Jul 2007 | JP | national |