1. Field of the Invention
The invention generally relates to fasteners. Particularly, the invention relates to studs provided with built-in torque-limiting features.
2. Related Prior Art
Numerous operations require that objects to be treated for various applications be initially placed and reliably held in the desired position. Often, tools performing a given operation on an object have a structure for reliably clamping this object between two or more tool components. Typically, one or more tool components are displaceable towards the object in response to applying an external force generated by the user. Displacement of the components continues until the object is secured.
The user relying on his/her experience typically determines reliable clamping of an object. It is not unusual, however, to apply an extra effort to ensure the desirable position of the clamped object regardless of whether this position has been already established or not.
For example, numerous cables have armored casings that are to be removed before connecting a cable in accordance with a given task. Cable cutting tools typically include a clamping arrangement, a so-called C-clamp, configured with a thumbscrew for securing the cable. In operation, the user applies a torque to a clamping stud displaceable towards and pressing against the cable. Often, after having secured the cable, the user may provide an additional torque to ensure reliable engagement between the stud and armored casing. Accordingly, the stud may advance further and crash the armored casing, which may lead to damaging the cable. Also, a body of cutting tools may experience undesirable reactive forces in response to unlimited torques, which potentially may damage the structural integrity of the tool's body.
Similar to clamping studs, tightening screws and bolts may require torque-limiting structures that prevent excessive external torques often damaging the body of this type of fasteners. In additional to protecting fasteners, a torque-limiting structure may provide control of applied torques. Characteristically, all the above-mentioned fasteners are known for being large and cumbersome.
A need therefore exists for studs provided with a torque-limiting structure operative to protect studs from overtightening.
A further need exists for studs provided with a torque-limiting structure operative to control applied torques.
Still a further need exists for studs with a built-in torque limiting structure that can be easily assembled and maintained.
Still another need exists for a method of making studs with built-in torque-limiting structures.
The present invention is directed to studs and methods that satisfy these needs. The invention includes a method of making a torque-limiting stud. In response to an external torque applied to a sleeve, a shank starts rotating with the sleeve while moving along a generally linear path at a predetermined distance. Once the applied torque reaches a preset limit, the sleeve rotatably disengages the shank and stops transferring the limiting torque to the shank. Increasing the applied torque will be sufficient to rotationally actuate the sleeve, but not affect the shank after its disengagement from the sleeve.
The shank's head has a ramp frictionally engaging the sleeve with a force sufficient for the sleeve and shank to rotate together while moving the stud at a predetermined distance. The head has a resilient portion bent at a preset angle relative to an underlying surface of the head and pressing against the sleeve with a force preventing rotational disengagement between these component during their displacement at the predetermined distance. The preset angle is controllably selected to define a limiting torque. Upon reaching the limiting torque, the sleeve starts slipping along the ramp relative to the shank without further driving the shank that has advanced at the desired distance. The ramp is configured to allow the sleeve to rotate relative to the shank in one rotational sense corresponding to advancement of the stud in a tightening axial direction after the object has been tightened. The bent portion of the stud abuts the sleeve upon reversing the rotational sense allowing thus the sleeve to displace the stud in an opposite axial direction.
A torque-limiting stud configured in accordance with the invention includes a shank having on its proximal end a head. The head is configured with a ramp coupleable to a sleeve, which drives the shank to a desired position in response to a pre-limiting torque applied to the head. A key, coupled to the sleeve, frictionally engages and presses against the ramp with a friction force, which prevents rotation of the sleeve relative to the shank in response to the pre-limiting torque. As a result, the sleeve axially displaces the shank in an axial tightening direction. As the applied torque gradually increases reaching a preset value that is selected to overcome the friction force between the ramp and key, the key starts sliding relative to the ramp preventing thus further axial displacement of the shank.
Configuration of the ramp includes a bent portion spaced from an underlying surface of the head and resiliently urging against the key. Increasing the applied torque to the preset value forces the key to move along the ramp and deflect the bent portion towards the underlying surface of the head. The edge of the bent portion terminates at an angular distance from an opposite flank of the ramp. Accordingly, the ramp has a recess separating the flank and the edge of the bent portion and configured to receive the key once it has passed the bent portion.
Since the opposite flank is configured to allow further rotation of the key along the ramp, increasing the torque above the preset value results in rotation of the sleeve relative to the shank. Reverse direction of rotation will force the key to abut the edge of the bent portion for simultaneous rotation of the coupled shank and head associated with axial displacement of the shank in an axial direction opposite to the initial axial direction.
The inventive torque-limiting stud thus allows the user (a) to increase a torque without the risk of overtightening the stud, and (b) in certain applications, to apply the same torque to a plurality of studs for uniform tightening coupleable objects.
These and other features and aspects of the present invention will be better understood with reference to the following description, figures, and appended claims.
Reference will now be made in detail to several views of the invention that are illustrated in the accompanying drawings. Wherever possible, same or similar reference numerals are used in the drawings and the description to refer to the same or like parts or steps. The drawings are in simplified form and are not to precise scale. For purposes of convenience and clarity only, directional terms, such as top, bottom, proximal, distal, below and above may be used with respect to the drawings. These and similar directional terms should not be construed to limit the scope of the invention in any manner. The words “connect,” “couple,” and similar terms with their inflectional morphemes do not necessarily denote direct and immediate connections, but also include connections through mediate elements or devices.
Referring to
A proximal end 34 (
The ramp extends spirally around the axis A-A (
If the key 20 is located within the gap 46 (
Note that the location of the key 20 and ramp 16 may be reversed; the shank 22 may be formed with the key, while the ramp may be rotatably fixed to the sleeve 14.
Referring to FIGS. 1, 3-5, upon applying the limiting torque, which causes the sleeve 14 to slip relative to the shank 12, the free end 42 of the ramp 16 is deflected axially towards the base surface 38 substantially to the level of the base 40 (
The specific features described herein may be used in some embodiments, but not in others, without departure from the spirit and scope of the invention as set forth. Many additional modifications are inteded in the foregoing disclosure, and it will be appreciated by those of ordinary skill in the art that in some instances some features of the invention will be employed in the absence of a corresponding use of other features. The illustrative examples therefore do not define the metes and bounds of the invention and the legal protection afforded the invention, which function is served by the claims and their equivalents.