The present invention relates to the field of assemblies for fastening wear members to support structures, for example, ground engaging teeth to adaptors of powered equipment.
Many types of excavating equipment utilize replaceable ground-engaging teeth. These teeth erode through use and are frequently replaced. Depending on the conditions, a given support structure or adaptor would be re-equipped with from 5 to 30 teeth to maintain a sharp penetrating edge during excavation. The ease of replacement of the teeth is important because it minimizes the amount of wasted throw-away material and also minimizes the downtime of the tool.
The prior art assemblies used to attach a tooth to the adaptor consist mainly of two designs, the wedge design and the pin design. In the wedge design, the tooth is joined to the adaptor by wedges which are hammered into corresponding slots in the tooth and the adaptor. This design has the disadvantage that the wedges would often become dislodged during use of the excavating equipment. To prevent this problem, the wedge was tack-welded in place. However, removal of the wedges became difficult and time consuming. It also required the drag-line bucket, for example, to be turned on its front end to gain access to the wedges. Further, during removal, the wedges had a tendency to shatter or break causing pieces to jam in the slots and posed a serious safety hazard to workers. Wedge designs are shown, for example, in U.S. Pat. No. 3,256,622.
Pin assemblies are shown in U.S. Pat. No. 2,121,993. This patent discloses a threaded pin and insert assembly for securing a tooth onto the adaptor. The threaded insert is placed into the adaptor pin opening. The tooth is placed over the adaptor. A lock washer is concentrically placed over the pin opening on the tooth. The pin is then screwed into the insert. This assembly had the disadvantage of being cumbersome and complex in design making it difficult to use and increasing the time needed to replace the tooth. As well, the pin has a tendency to loosen from the insert while the tooth is in use. Another pin assembly is shown in U.S. Pat. No. 3,410,010 which discloses a dipper tooth having a detent and key assembly inserted into a passage in the tooth and adaptor. This assembly suffers from the drawback that the key would often fall out of the passage during use of the tooth allowing the tooth to fall off the adaptor.
These wedge and pin assemblies were used not only for attaching ground-engaging teeth to adaptors on excavating equipment but also for attaching other types of wear members to support structures such as for example, attaching a protective lip shroud to a bucket lip.
There is therefore a need for an assembly to attach a removable wear member to a support structure in such a way that the assembly is easy to use, reliable, and economical to manufacture. The assembly needs to be easily installed and removed without the use of force or impact on the locking device. It needs to be easily installed and simple to remove so that wear member changes can be accomplished with minimum effort and maximum safety. It needs to remain functional throughout its service life so that even after a long period of use, it can still easily release a worn-out wear member that is due for replacement.
It is therefore an object of the present invention to overcome the disadvantages of the prior art. It is a further object to provide a locking assembly for attaching a wear member to a support structure that is easy to install and remove, does not require the application of any significant force or impact to install or remove, and that remains functional during long periods of use.
There is therefore provided an assembly for operatively attaching a wear member to a support structure, wherein the wear member and support structure respectively have a first and second passage which are co-extensive and form a common passage when the wear member is operatively coupled to the support structure, the assembly comprising: a pin retainer receivable in non-rotatable position within the first passage; and pin means insertable within the pin retainer and extending through the first passage and into the second passage to operatively lock the wear member to the support structure.
There is also provided an assembly for operatively attaching a wear member to a support structure, wherein the wear member and support structure respectively have a first and second passage which are co-extensive and form a common passage when the wear member is operatively coupled to the support structure, the assembly comprising: a pin retainer receivable in the first passage in the wear member, said pin retainer having an outer surface, an inner end and outer end; retaining means for retaining the pin retainer in the first passage; and pin means insertable within the pin retainer and extending through the first passage and into the second passage to operatively lock the wear member to the support structure.
There is also provided in a further embodiment of the present invention a method for locking a wear member to a support structure wherein the wear member has a first passage and the support structure has a second passage which are coextensive when the wear member is operatively coupled to the support structure, comprising the steps of: inserting a pin retainer into the first passage in the wear member whereby the pin retainer is held in non-rotatable position; coupling the wear member to the support structure so that the first and second passages are co-extensive; and inserting a pin means into the pin retainer by the application of torque force wherein the pin means extends through the first passage and into the second passage to lock the wear member to the support structure.
Preferred embodiments of the present invention will now be described and may be better understood when read in conjunction with the following drawings in which:
a-d are side cross-sectional (a), side (b), top (c) and perspective (d) views of a pin retainer with internal threads for mounting in the wear member shown in
a-c is a side (a), top (b), and bottom perspective (c) view of a turnable, externally threaded lock pin.
With reference to the Figures, there is provided an assembly and method for locking a wear member to a support structure. The locking mechanism may be used to lock a tooth to an adaptor, a lip shroud to a bucket lip, or for other analogous uses.
The assembly comprises a pin retainer and lock pin. The retainer and pin are positioned in a wear member on a support structure having corresponding openings to lock the wear member to the support structure.
An excavating tooth or wear member generally has a triangular shaped cross-section and is formed so as to be received over the working end of a support structure. A wear member 1 is shown in
The pin retainer 9 of the present invention is inserted into the pin-retainer-receiving opening 5 in the wear member 1. Therefore, its shape corresponds to the shape of the opening 5. It is shown in
The pin retainer described and shown in the drawings is one preferred embodiment. Other configurations of the pin retainer are possible and would be obvious to a skilled person in this field. For example, the pin retainer need not be radially symmetric. Any polygonal shape would serve to prevent rotation of the pin retainer within a receiving hole of matching shape. Similarly, it is not necessary that the peripheral surface of the pin retainer have a frustoconical taper. The pin retainer must be received into the pin-retainer-receiving opening in the wear member so that it cannot pass through the opening and fall out. The retainer (and correspondingly the opening) may simply be wider on the inside surface than on the outside surface.
An alternative embodiment for the pin retainer is shown in
The pin retainer may be manufactured from any type of suitable material. Preferably, it is manufactured from a resilient polymer, such as for example resilient polycarbonate, however, other materials may be used.
The lock pin 13 of the present invention is comprised of a generally circular elongated body as shown in
To lock a wear member 1 to a support structure 3, the pin retainer 9 is placed in the pin-retainer-receiving opening 5 in the wear member by inserting the retainer 9 into the opening 5 from the internal surface I of the wear member. This step is shown in
To unlock the wear member from the support structure, a ratchet is used to rotate the pin 13 to loosen it from the pin retainer 9. The lock pin 13 is unscrewed from the pin retainer 9 either until its inner edge is flush with the inside surface of the wear member or it may be fully removed. The wear member 1 may then be removed from the working end U of the support structure 3. The pin retainer 9 may be removed from the opening 5 in the wear member 1 by pushing it towards the internal surface I of the wear member. The wear member and/or the locking assembly may be replaced.
The installation and removal of this assembly does not require any significant force or impact. The lock pin is tightened and removed from the pin retainer by the application of torque from a standard ratchet tool. The equipment installer is therefore in no danger of personal injury by flying fragments of a broken hammer, locking pin, or wedge. The assembly contains only one moving part, the pin within the retainer. It does not contain internal cavities which would accumulate dirt and interfere with the operation of the locking assembly. The locking assembly is economic to manufacture and easy to install and therefore may be completely replaced by a new assembly every time the wear member is replaced.
The above-described embodiments of the present invention are meant to be illustrative of preferred embodiments of the present invention and are not intended to-limit the scope of the present invention. Various modifications, which would be readily apparent to one skilled in the art, are intended to be within the scope of the present invention. The only limitations to the scope of the present invention are set out in the following appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2,312,550 | Jun 2000 | CA | national |
Number | Date | Country | |
---|---|---|---|
Parent | 09882825 | Jun 2001 | US |
Child | 11263542 | Oct 2005 | US |