Torque peak detection and control mechanism for a CVP

Information

  • Patent Grant
  • 10088022
  • Patent Number
    10,088,022
  • Date Filed
    Monday, November 17, 2014
    9 years ago
  • Date Issued
    Tuesday, October 2, 2018
    6 years ago
Abstract
A system for monitoring torque input into a transmission from a torque source comprising a torque sensing device and a control mechanism. The torque sensing device adapted to transfer torque from the torque source to the transmission input while measuring said torque. The control mechanism may be adapted to control the transmission in order to prevent damage from a high torque situation.
Description
BACKGROUND OF THE INVENTION

Automatic and manual transmissions are commonly used on automotive vehicles, such as cars, trucks and Off-Highway Vehicles. Both conventional automatic and manual transmissions are restricted to a select few gear ratios, that enable a range of vehicle speeds while keeping the vehicle's internal combustion engine (ICE) operating within its limited operable engine speed range. Within the usable range of engine speeds for an ICE, there are optimal speeds for efficiency and power generation. Due to the discreet gear ratios of conventional automatic and manual transmissions, operating ICE vehicles at these optimal engine speeds is restricted to discreet vehicle speeds. Those transmissions are becoming more and more complicated since the engine speed has to be more precisely controlled to limit the fuel consumption and the emissions of cars. This finer control of the engine speed in usual transmissions can only be done by adding more gears (and corresponding discrete gear ratios) While adding additional gears to conventional transmissions can help the user operate the vehicle at optimal rpm ranges for a greater corresponding range of vehicle speeds, doing so adds significant cost and complexity to the transmission. Continuously variable transmissions (CVT) on the other hand can steplessly operate at an infinite number of gear rations between low gear ratio and a high gear ratio. CVTs are available in many types: belts with variable pulleys, toroidal, and conical to name a few. This ability to operate at a continuous range of gear ratios allows an automotive vehicle to operate at a constant ICE engine speed over a broad range of vehicle speeds. The main advantage of a CVT is that it enables the engine to run at its most efficient rotation speed by changing steplessly the transmission ratio as a function of the vehicle speed. Moreover, the CVT can also shift to a ratio providing more power if higher acceleration is needed. A CVT can change the ratio from the minimum to the maximum ratio without any interruption of power, unlike conventional transmissions which cause an interruption of power during ratio shifts. Furthermore, such capabilities allow for the optimization of the ICE design for narrow but more efficient power bands, allowing greater useable power from smaller displacement more economical engines. A specific use of CVTs is the Infinite Variable Transmission or IVT. Whereas the CVT is limited at positive speed ratios, the IVT configuration can perform a neutral gear and even reverse ratios steplessly. A CVT can also be used as an IVT in some driveline configurations.


A typical CVT design example is the Fallbrook “NuVinci” Technology, which is a rolling traction drive system, transmitting forces between the input and output rolling surfaces through shearing a thin fluid film. NuVinci designs utilize a continuously variable planetary (CVP) variator, which steplessly operates through a range of speed ratios. The technology is called “Continuously Variable Planetary” (CVP) due to its analogous operation to a planetary gear system. The system consists of an input disc (ring) driven by the power source, an output disc (ring) driving the CVP output and a set of balls rotating on its own axle and is fitted between these two discs and a central sun.


The torque from the input power source is transferred between input ring, balls and output ring using a thin layer of traction fluid (elasto-hydrodynamic lubrication, or EHL). The discs are clamped onto the balls tightly to achieve the clamping force required to transmit the torque.


The relative speed of the output ring is controlled by tilting the angle of the ball axles relative to the transmission axis. By tilting the ball axles the CVP can operate steplessly within a range of speed ratios. Typically the speed ration range spans underdrive to overdrive ratios.


One challenge in using a CVT, such as those having a CVP, is the management of high torques supplied to the CVT. Over-torque situations wherein torque flowing through the CVT surpasses the design limit of the variator or other components of the transmission may lead to catastrophic failure, damage, or decreased operating life of the variator or other transmission components. Currently there exists no cost-effective solution that can detect high torque high and adequately control the variator in such cases. Thus, the variator will not be protected and oversizing might be needed to ensure the sufficient life of the designs. Thus there exists a need for a system that can detect high torques being supplied to the variator and that can adequately control the variator or other aspects of the vehicle driveline to prevent damage to and preserve the operating life of the transmission, especially the variator.


SUMMARY OF THE INVENTION

Aspects of the disclosure provide systems and methods for preventing over-torque in a transmission. Additionally, aspects of the disclosure provide a systems and methods for preventing over-torque in a vehicle driveline. Over-torque is typically defined as torque exceeding a threshold value. Many embodiments provide a system for preventing over-torque in a transmission comprising: a torque sensing device drivingly engaged with a torque source and adapted to transfer torque from the torque source to an input of the transmission. The torque sensing device is typically also adapted to measure the amount of torque being transferred from the torque source to the transmission. In such embodiments the system further comprises a control mechanism operably engaged to the torque sensing device and adapted to control a current state of the transmission based on, or in response to, the amount of torque measured by the torque sensing device. Typically the control mechanism controls the current state of the transmission such that the torque in the transmission does not exceed a threshold value for the transmission's current state. The control mechanism may additionally or alternatively modify the current state of the transmission to reduce stress in the transmission caused by the applied torque. The current state of the transmission may comprise the current speed ratio of the transmission.


In many exemplary embodiments the transmission comprises a continuously variable transmission (CVT). In some embodiments the continuously variable transmission comprises a continuously variable planetary (CVP) variator, and the current state of the transmission comprises a current speed ratio of the variator.


In exemplary embodiments, the torque sensing device comprises a first rotatable member, a second rotatable member, and a torsion spring disposed therebetween; the torsion spring being drivingly engaged with both rotatable members. Typically, the first rotatable member is configured to transfer torque from the torque source through the torsion spring to the second rotatable member. The second rotatable member is typically configured to transfer torque relieved through the torsion spring to the input of the transmission. In such exemplary embodiments the torsion spring produces a phase difference in the rotations of the first and the second rotatable members, the phase difference being proportional to the torque applied by the torque source to the transmission, thereby the torque sensing device provides a measurement of the torque being applied to the transmission, also referred to as “applied torque”.


In such exemplary embodiments, the torque sensing device may further comprise a first planetary gear set having a first sun, a first set of planet gears supported by a first planetary carrier, and a first ring gear. The first sun may typically be the first rotatable member. The torque sensing device may further comprise a second planetary gear set having a second sun, a second set of planet gears supported by a second planetary carrier, and a second ring gear. The second ring gear may be rotatably fixed to the first ring gear or the first and the second ring gears may be one common ring gear. The second sun may typically be the second rotatable member. In such embodiments the gear ratios between the first sun, the first set of planets and the first ring gear are the same as the gear ratios between the second sun, the second set of planets and the second ring gear. The first planetary carrier may be rotatably grounded thereby creating an angular displacement in the second planetary carrier that is proportional to the applied torque, thereby providing a non-rotating measure of the applied torque.


In some embodiments, the control mechanism may be adapted to provide rotation to one or more of an input disc of the CVP variator or an output disc of the CVP variator in response to the torque sensing device measuring the applied torque. In some embodiments, the amount of rotation provided by the control mechanism is proportional to the difference between the applied torque and the threshold for the current state of the transmission.


Aspects of the invention include vehicle drivelines comprising any of the systems for preventing over-torque in a transmission described above.


Aspects of the invention include methods of providing any of the systems for preventing over-torque in a transmission described above. Such methods may comprise providing such systems for preventing over-torque in a vehicle driveline.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is an exemplary configuration of the main elements of a CVP.



FIG. 2 illustrates the general working principle of a ball-type CVT including the ratio change in the CVP.



FIG. 3 illustrates how the basic driveline configuration of a CVT is used to replace a traditional transmission and is located between the engine (ICE—internal combustion engine, or other power source) and the differential.



FIG. 4 is an exemplary configuration of a torque sensing device connected between a torque source and an input of a CVP variator.



FIG. 5 illustrates a connection point within the CVP where a linkage between the control mechanism and the non-rotating angular displacement may occur.



FIG. 6 illustrates the relationship between a corrective rotation, an applied torque, and a threshold.





DETAILED DESCRIPTION OF THE INVENTION

A specific use of CVTs is the Infinite Variable Transmission or IVT. Where the CVT is limited to positive speed ratios, the IVT configuration can perform a neutral gear and even reverse ratios steplessly. A CVT can be used as an IVT in some driveline configurations.


Provided herein are configurations based on a ball type CVT, also known as CVP, for constant variable planetary. Aspects of the CVTs are described in US2006084549 or AU2011224083A1, incorporated herein by reference in their entirety. The type of CVT used herein, as shown on FIG. 1, is composed of a plurality of variator balls, 997, depending on the application, two discs, input disc, 995, and output disc, 996 or annular rings each having an engagement portion that engages the variator balls, 997. The engagement portions may be in a conical or toroidal convex or concave surface contact with the variator balls, 997, as input and output. The CVT may include an idler, 999, contacting the balls, 997, as well as shown on FIG. 1. The variator balls, 997, are mounted on axes, 998, themselves held in a cage or carrier allowing changing the ratio by tilting the variator balls' axes, 998. Other types of ball CVTs also exist, like the one produced by Milner but are slightly different. These alternative ball CVTs are additionally contemplated herein. The working principle generally speaking, of a ball-type CVT is shown in FIG. 2.


The CVP itself works with a traction fluid. The lubricant between the ball and the conical rings acts as a solid at high pressure, transferring the power from the first ring assembly, through the variator balls, to the second ring assembly. By tilting the variator balls' axes, the ratio can be changed between input and output. When the axis of each of the variator balls is horizontal the ratio is one, when the axis is tilted the distance between the axis and the contact point change, modifying the overall ratio. All the variator balls' axles are tilted at the same time with a mechanism included in the cage.


In a car, the CVT, 300, is used to replace traditional transmission and is located between the engine (ICE, 301, or internal combustion engine) or other power source, and the differential, 302, as shown on FIG. 3. A torsional dampener, 303, alternatively called a damper, may be introduced between the engine, 301, and the CVT, 300, to avoid transferring torque peaks and vibrations that could damage the CVT, 300. In some configurations this dampener, 303, can be coupled with a clutch, 304, for the starting function or to allow the engine to be decoupled from the transmission. The CVT may also be used as the variator in this layout.


Aspects of the disclosure may also include other architectures. Various powerpath layouts can be introduced by adding a number of gears, clutches and simple or compound planetaries. The overall transmission can provide several operating modes; a CVT, an IVT, or combinations thereof.


In drivelines such as those depicted in FIG. 3, care must be taken to shield the transmission from high torque. Aspects of the disclosure include system and methods for detecting high torque peaks being transferred from a torque source to a vehicle transmission. Typically the torque source is the engine of the vehicle driveline which may be an ICE, electric motor, or other source of motive torque. Many embodiments comprise a torque sensing device located in between the engine and the transmission in the vehicle driveline. In many embodiments the torque sensing device may transfer the torque from the torque source (engine) to an input of the transmission. The input to the transmission may comprise a CVP variator. The CVP variator may require protection form torque inputs exceeding a threshold level in order to maintain viability of all components of the CVP. An exemplary embodiment is of the torque sensing device is shown in FIG. 4.


Aspects of the disclosure include a torque detection mechanism. This detection mechanism can be positioned flexibly in the CVP-layout: at the input of the variator, at the output of the variator or at some other relevant position inside a planetary configuration. More than one detection mechanism in the system may be used and the outputs may be combined. A detection mechanism may be purely mechanical. A detection mechanism may be based on electro-magnetic, hydraulic, pneumatic, or other technologies. A mechanical detection mechanism may comprise a spring inside the torque path of the CVP.


Referring now to the embodiment of FIG. 4, the torque sensing device is shown connected between torque source Tin, 400, and the input of CVP variator, Tout, 401. In such embodiments, the torque sensing device may comprise two rotational members (shown as sun gears s1, 402, and s2, 403) connected via a torsion spring, 404. Torque is transferred from torque source Tin, 400, to the first rotational member s1, 402, and then the second rotational member s2, 403, through the torsion spring, 404. From s2, 403, the torque is transferred to the input of the CVP and the transmission. The torsion spring, 404, will produce a difference in the angular positions of s1, 402, an s2, 403, that is function of the torque being passed form the torque source to the transmission (also referred to as the applied torque, or Tin, 400,). Such angular displacement manifests as a phase difference between the angular (rotational) positions Θ1,, 405, and Θ2, 406, of s1, 402, and s2, 403, respectively, as they rotate. The phase difference is a direct measure of the torque applied to transmission from the torque source. Angular (rotational) position sensors on s1, 402, and s2, 403 may track the phase difference thereby allowing a calculation of the applied torque from the torque source. The relationship between the applied torque and the phase difference between angular positions of s1, 402, and s2, 403 may be a linear function such as T=k*(Θ1,−Θ2) where T is the applied torque and k is the spring constant of the torsion spring, 404. In alternative embodiments, T may have any non-linear relationship to the phase difference (Θ1,−Θ2) depending on the characteristics of the spring, 404.


In exemplary embodiments the torque sensing device may convert the rotating angular difference (Θ1,−Θ2) created by the torsion spring, 404 into a non-rotating angular difference. The non-rotating angular difference may serve as an output of the torque sensing device and as an input to a control mechanism, 407, the control mechanism, 407, being tasked to control aspects of the vehicle driveline (including the transmission or a CVP contained therein) in order to prevent damage from too high amounts of torque. In such embodiments, the first and second rotational members may be sun gears of planetary gearsets. This is also shown in FIG. 4, as s1, 402, and s2, 403, may be each rotatably coupled to a set of planet gears supported by planet carriers c1, 408, and c2, 409, respectively. Here c1, 408, and c2, 409, are coupled to a common ring gear, 410, and c1, 408, is rotatably grounded. The gear ratios between s1, 402, c1, 408, and the ring, 410, are the same as the gear ratios between s1, 402, c2, 409, and the ring, 410. Alternatively, each of the two planetary gear sets may have their own ring gear, 410, the ring gear, 410, of the one being rotatably coupled to the other, the gear ratios of the two planetary gear sets should still be identical. Such embodiments operate as follows: When the applied torque is steady s1, 402, and s2, 403, rotate at the same speed. Since c1, 408, is stationary the ring, 410, (or separate rings) rotates at a speed determined by the gear ratio between s1, 402, and the ring, 410, through c1, 408. Since the second planetary (s1, 402, c2, 409, the ring, 410) have equivalent gear ratios to the first planetary (s1, 402, c1, 408, the ring, 410), c2, 409, will also be stationary when the applied torque is constant. When the applied torque changes, the phase difference changes between the rotational positions of s1, 402, and s2, 403, during this phase shift rotation is introduced in c2, 409, via the ring, 410, and c2, 409, will assume a new angular position. When the phase shift is completed and s1, 402, and s2, 403, are once again rotating at the same speed, c2, 409, will come to rest at a new angular position, wherein the change in c2's, 409, angular position is proportional to the change in applied torque. The angular difference between the new angular position of c2, 409, and its initial angular position serves as a direct measurement of the applied torque. Such a direct measurement is non-rotating and may be connected to drive line control devices directly in mechanically simpler ways.


In many embodiments the torque sensing device passes information of the applied torque to a control mechanism, 407. In exemplary embodiments, the torque sensing device produces a non-rotating angular difference measurement of the applied torque, as explained above. This non-rotating output may be directly connected to the control mechanism, 407. In alternative embodiments the phase difference between s1, 402, and s2, 403, may be tracked with angular position sensors to determine the applied torque, such information may then be passed to the control mechanism, 407.


In exemplary embodiments the control mechanism, 407, may be configured to control the speed ratio of the transmission or a CVP contained therein. A detection mechanism may be purely mechanical. A detection mechanism may be based on electro-magnetic, hydraulic, pneumatic, or other technologies. In exemplary embodiments the control mechanism, 407, is adapted to control the ball axis, 411, of the CVP balls shown in FIG. 4. If the torque sensing device detects an applied torque that is beyond a threshold torque, the control mechanism, 407, may change the speed ratio of the transmission to one that can safely accommodate the applied torque. In some embodiments, the transmission of the vehicle driveline may comprise a CVT having a CVP with a power splitting capabilities, wherein a portion of the applied torque may be routed through the transmission via more robust mechanical components depending on the current state speed ratio of the transmission. In such embodiments the control mechanism, 407, may change the speed ratio of the transmission to route a greater portion of the torque through the sturdier components when the torque sensing device detects an applied torque above the threshold. In some embodiments, this may lead to a deceleration of the vehicle which will decrease load on the variator.


As described above, many exemplary embodiments comprise a torque sensing device that provides a non-rotating angular displacement as a measure of the applied torque from the torque source. In many such embodiments the control mechanism, also mentioned above, may link the non-rotating angular displacement to the mechanism that controls the speed ratio of the variator (CVP) in the vehicle driveline. This link may be purely mechanical, providing an advantage of non-rotating measurement of the applied torque. The link may connect to the one of the variators input or output discs. FIG. 5 shows a connection point, 500, within the CVP where such a linkage may occur. In some embodiments, when the torque sensing device detects an applied torque above the threshold, the control mechanism may rotate one of the input or the output discs of the variator as a corrective action, also referred to as corrective rotation. In exemplary embodiments the variator will operate normally until the threshold is reached, however once the applied torque surpasses the threshold the control mechanism may supply the corrective rotation a to either the input or output disc. Such corrective rotation may alleviate stress within the CVP resulting from the over-torque situation, thereby prolonging the life of the transmission. The corrective rotation a may increase as the applied torque T increases past the threshold Tallowed. This relationship is shown in FIG. 6.


The control mechanism may be implemented purely mechanically. Alternatively, the control mechanism may involve a combination of mechanical and other technologies; e.g.: electrical, hydraulic, and magnetic. The control mechanism may have flexibility to handle both positive and negative torques.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A system for preventing over-torque in a transmission comprising: a torque sensing device drivingly engaged with a torque source and adapted to transfer torque from the torque source to an input of the transmission and adapted to measure an applied torque, being an amount of torque being transferred to the transmission from the torque source; anda control mechanism operably engaged to the torque sensing device and adapted to modify a current state of the transmission based on the amount of torque measured by the torque sensing device;wherein the transmission comprises a continuously variable transmission (CVT),wherein the CVT comprises a continuously variable planetary (CVP) variator and the current state of the transmission controlled by the control mechanism comprises a speed ratio of the CVP variator, andwherein the torque sensing device comprises a first rotatable member, a second rotatable member and a torsion spring disposed therebetween, wherein the first rotatable member is configured to transfer torque from the torque source through the torsion spring to the second rotatable member,wherein the second rotatable member is configured to transfer torque received through the torsion spring to the input of the transmission, andwherein the torsion spring produces a phase difference in rotations of the first and the second rotatable members, the phase difference being proportional to the torque applied by the torque source to the transmission and thereby providing a measurement of the torque being applied to the transmission.
  • 2. The system of claim 1, wherein the torque sensing device further comprises: a first planetary gearset having a first sun, a first set of planet gears supported by a first planetary carrier and a first ring gear;a second planetary gearset having a second sun, a second set of planet gears supported by a second planetary carrier and a second ring gear, the second ring gear being rotatably fixed to the first ring gear such that the first and second ring gears rotate together at the same speed;wherein the gear ratios between the first sun, the first set of planets, and the first ring gear are the same as the gear ratios between the second sun, the second set of planets, and the second ring gear,wherein the first rotatable member is the sun of the first planetary gearset and the second rotatable member is the sun of the second planetary gearset, andwherein the first planetary carrier is rotatably grounded thereby creating an angular displacement in the second planetary carrier that is proportional to the amount of torque being transferred from the torque source to the transmission, thereby providing a non-rotating measure of the torque being transferred from the torque source to the transmission.
  • 3. The system of claim 1, wherein the control mechanism is adapted to provide rotation to one or more of an input disc of the CVP variator or an output disc of the CVP variator in response to the torque sensing device measuring the applied torque.
  • 4. A vehicle driveline comprising the system of claim 1.
  • 5. The system of claim 2, wherein the control mechanism is adapted to provide rotation to one or more of an input disc of the CVP variator or an output disc of the CVP variator in response to the torque sensing device measuring the applied torque.
  • 6. The system of claim 3, wherein an amount of the rotation provided by the control mechanism is proportional to the difference between the applied torque and a threshold for the current state of the transmission.
  • 7. The system of claim 5, wherein an amount of the rotation provided by the control mechanism is proportional to the difference between the applied torque and a threshold for the current state of the transmission.
  • 8. A system for preventing over-torque in a transmission comprising: a torque sensing device drivingly engaged with a torque source and adapted to transfer torque from the torque source to an input of the transmission and adapted to measure an applied torque, being an amount of torque being transferred to the transmission from the torque source; anda control mechanism operably engaged to the torque sensing device and adapted to modify a current state of the transmission based on the amount of torque measured by the torque sensing device;wherein the transmission comprises a continuously variable transmission (CVT), andwherein the CVT comprises a continuously variable planetary (CVP) variator and the current state of the transmission controlled by the control mechanism comprises a speed ratio of the CVP variator.wherein the control mechanism is adapted to provide rotation to one or more of an input disc of the CVP variator or an output disc of the CVP variator in response to the torque sensing device measuring the applied torque.
  • 9. The system of claim 8, wherein an amount of the rotation provided by the control mechanism is proportional to the difference between the applied torque and a threshold for the current state of the transmission.
  • 10. A vehicle driveline comprising the system of claim 8.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage entry of International Application No. PCT/US2014/065909, filed Nov. 17, 2014, which claims the benefit of U.S. Provisional Application No. 61/905,742, filed Nov. 18, 2013, both of which are incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/065909 11/17/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/073948 5/21/2015 WO A
US Referenced Citations (254)
Number Name Date Kind
1063244 Ludwig Jun 1913 A
1215969 Thomas Feb 1917 A
1526140 Gruver Feb 1925 A
2019006 Ferrarl Oct 1935 A
2060884 Madle Nov 1936 A
2148759 Grand Feb 1939 A
2405201 Franck Aug 1946 A
2660897 Neidhart et al. Dec 1953 A
2729118 Emslie Jan 1956 A
2931235 Hayward Apr 1960 A
3203278 General Aug 1965 A
3376633 Wesley Apr 1968 A
3407687 Hayashi Oct 1968 A
3470720 Phillip et al. Oct 1969 A
3505718 Carl Apr 1970 A
3583060 Maurice Jun 1971 A
3688600 Allan Sep 1972 A
3765270 Lemieux Oct 1973 A
3774280 Eklund et al. Nov 1973 A
3831245 Amos Aug 1974 A
3894559 Depuy Jul 1975 A
4046988 Okuda et al. Sep 1977 A
4187709 Legate et al. Feb 1980 A
4226140 Gaasenbeek Oct 1980 A
4333358 Grattapaglia Jun 1982 A
4344336 Carriere Aug 1982 A
4360090 Wonn Nov 1982 A
4368572 Kanazawa et al. Jan 1983 A
4464952 Stubbs Aug 1984 A
4693134 Kraus Sep 1987 A
4731044 Mott Mar 1988 A
4756211 Fellows Jul 1988 A
4784017 Johnshoy Nov 1988 A
4856371 Kemper Aug 1989 A
4856374 Kreuzer Aug 1989 A
4950208 Tomlinson Aug 1990 A
4963122 Ryan Oct 1990 A
4963124 Takahashi et al. Oct 1990 A
5109962 Sato May 1992 A
5168778 Todd et al. Dec 1992 A
5217412 Indlekofer et al. Jun 1993 A
5230670 Hibi Jul 1993 A
5238460 Esaki et al. Aug 1993 A
5318486 Lutz Jun 1994 A
5390759 Gollner Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5520588 Hall, III May 1996 A
5527231 Seidel et al. Jun 1996 A
5577423 Mimura Nov 1996 A
5599251 Beim et al. Feb 1997 A
5659956 Braginsky et al. Aug 1997 A
5683322 Meyerle Nov 1997 A
5726353 Matsuda et al. Mar 1998 A
5730678 Larkin Mar 1998 A
5766105 Fellows et al. Jun 1998 A
5776028 Matsuda et al. Jul 1998 A
5800303 Benford Sep 1998 A
5860888 Lee Jan 1999 A
5915801 Taga et al. Jun 1999 A
5961415 Justice et al. Oct 1999 A
5971883 Klemen Oct 1999 A
5996226 Gibbs Dec 1999 A
6009365 Takahara et al. Dec 1999 A
6036616 McCarrick et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6053839 Baldwin et al. Apr 2000 A
6059685 Hoge et al. May 2000 A
6071208 Koivunen Jun 2000 A
6080080 Bolz et al. Jun 2000 A
6083135 Baldwin et al. Jul 2000 A
6086504 Illerhaus Jul 2000 A
6089287 Welsh et al. Jul 2000 A
6095942 Yamaguchi et al. Aug 2000 A
6155951 Kuhn et al. Dec 2000 A
6217474 Ross et al. Apr 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6273838 Park Aug 2001 B1
6342026 Takagi et al. Jan 2002 B1
6358178 Wittkopp Mar 2002 B1
6371880 Kam Apr 2002 B1
6481258 Belinky Nov 2002 B1
6554735 Kanazawa Apr 2003 B2
6558285 Sieber May 2003 B1
6585619 Henzler Jul 2003 B2
6609994 Muramoto Aug 2003 B2
6632157 Gierling et al. Oct 2003 B1
6641497 Deschamps et al. Nov 2003 B2
6645106 Goo et al. Nov 2003 B2
6689012 Miller et al. Feb 2004 B2
6705964 Nagai et al. Mar 2004 B2
6719659 Geiberger et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6726590 Henzler et al. Apr 2004 B2
6733412 Kumagai et al. May 2004 B2
6752696 Murai et al. Jun 2004 B2
6793603 Teraoka et al. Sep 2004 B2
6849020 Sumi Feb 2005 B2
6866606 Ooyama Mar 2005 B2
6949045 Wafzig et al. Sep 2005 B2
6979275 Hiraku et al. Dec 2005 B2
6986725 Morscheck Jan 2006 B2
7033298 Usoro et al. Apr 2006 B2
7074154 Miller Jul 2006 B2
7086981 Ali et al. Aug 2006 B2
7104917 Klemen et al. Sep 2006 B2
7128681 Sugino et al. Oct 2006 B2
7160220 Shinojima et al. Jan 2007 B2
7186199 Baxter, Jr. Mar 2007 B1
7217214 Morscheck et al. May 2007 B2
7234543 Schaaf Jun 2007 B2
7288044 Gumpoltsberger Oct 2007 B2
7311634 Shim et al. Dec 2007 B2
7335126 Tsuchiya et al. Feb 2008 B2
7347801 Guenter et al. Mar 2008 B2
7396309 Heitz et al. Jul 2008 B2
7431677 Miller et al. Oct 2008 B2
7470210 Miller et al. Dec 2008 B2
7473202 Morscheck et al. Jan 2009 B2
7485069 Jang et al. Feb 2009 B2
7497798 Kim Mar 2009 B2
7588514 McKenzie et al. Sep 2009 B2
7637838 Gumpoltsberger Dec 2009 B2
7672770 Inoue et al. Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7717815 Tenberge May 2010 B2
7727107 Miller Jun 2010 B2
7780566 Seo Aug 2010 B2
7874153 Behm Jan 2011 B2
7878935 Lahr Feb 2011 B2
7951035 Platt May 2011 B2
7980972 Starkey et al. Jul 2011 B1
8029401 Johnson Oct 2011 B2
8052569 Tabata et al. Nov 2011 B2
8062175 Krueger et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8142323 Tsuchiya et al. Mar 2012 B2
8226518 Parraga Jul 2012 B2
8257216 Hoffman Sep 2012 B2
8257217 Hoffman Sep 2012 B2
8287414 Weber et al. Oct 2012 B2
8313404 Carter et al. Nov 2012 B2
8376903 Pohl et al. Feb 2013 B2
8382636 Shiina et al. Feb 2013 B2
8447480 Usukura May 2013 B2
8469856 Thomassy Jun 2013 B2
8545368 Davis et al. Oct 2013 B1
8594867 Heap et al. Nov 2013 B2
8622871 Hoff Jan 2014 B2
8639419 Roli et al. Jan 2014 B2
8668614 Sherrill et al. Mar 2014 B2
8678975 Koike Mar 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8926468 Versteyhe et al. Jan 2015 B2
8986150 Versteyhe et al. Mar 2015 B2
9052000 Cooper Jun 2015 B2
9114799 Tsukamoto et al. Aug 2015 B2
9133918 Hamrin Sep 2015 B2
9156463 Legner et al. Oct 2015 B2
9194472 Versteyhe et al. Nov 2015 B2
9322461 Younggren Apr 2016 B2
9347532 Versteyhe et al. May 2016 B2
9353842 Versteyhe et al. May 2016 B2
20020004438 Toukura et al. Jan 2002 A1
20020094911 Haka Jul 2002 A1
20030181280 Elser et al. Sep 2003 A1
20030200783 Shai Oct 2003 A1
20030213125 Chiuchang Nov 2003 A1
20030216121 Yarkosky Nov 2003 A1
20030228952 Shinichiro et al. Dec 2003 A1
20040058769 Larkin Mar 2004 A1
20040061639 Voigtlaender et al. Apr 2004 A1
20040166984 Inoue Aug 2004 A1
20040167391 Solar et al. Aug 2004 A1
20040171452 Miller et al. Sep 2004 A1
20050102082 Shinichior et al. May 2005 A1
20050137046 Miller et al. Jun 2005 A1
20050153810 Miller et al. Jul 2005 A1
20060094515 Szuba et al. May 2006 A1
20060276294 Coffey et al. Dec 2006 A1
20070032327 Raghavan et al. Feb 2007 A1
20070042856 Greenwood et al. Feb 2007 A1
20070072732 Klemen Mar 2007 A1
20070096556 Kokubo et al. May 2007 A1
20070275808 Iwanaka et al. Nov 2007 A1
20080039273 Smithson et al. Feb 2008 A1
20080103002 Holmes May 2008 A1
20080185201 Bishop Aug 2008 A1
20090017959 Triller Jan 2009 A1
20090062064 Kamada et al. Mar 2009 A1
20090132135 Quinn, Jr. et al. May 2009 A1
20090221391 Bazyn et al. Sep 2009 A1
20090221393 Kassler Sep 2009 A1
20090286651 Tanaka et al. Nov 2009 A1
20090312137 Rohs et al. Dec 2009 A1
20100056322 Thomassy Mar 2010 A1
20100093479 Carter et al. Apr 2010 A1
20100106386 Krasznai et al. Apr 2010 A1
20100113211 Schneider et al. May 2010 A1
20100137094 Pohl Jun 2010 A1
20100141193 Rotondo et al. Jun 2010 A1
20100244755 Kinugasa et al. Sep 2010 A1
20100267510 Nichols et al. Oct 2010 A1
20100282020 Greenwood et al. Nov 2010 A1
20100304915 Lahr Dec 2010 A1
20100310815 Mendonca et al. Dec 2010 A1
20110015021 Maguire et al. Jan 2011 A1
20110034284 Pohl et al. Feb 2011 A1
20110152031 Schoolcraft Jun 2011 A1
20110165982 Hoffman et al. Jul 2011 A1
20110165985 Hoffman et al. Jul 2011 A1
20110165986 Hoffman et al. Jul 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110300954 Szuba et al. Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120024991 Pilch et al. Feb 2012 A1
20120035016 Miller et al. Feb 2012 A1
20120040794 Schoolcraft Feb 2012 A1
20120122624 Hawkins, Jr. et al. May 2012 A1
20120142477 Winter Jun 2012 A1
20120165154 Wittkopp et al. Jun 2012 A1
20120244990 Ogawa et al. Sep 2012 A1
20120309579 Miller et al. Dec 2012 A1
20130130859 Lundberg et al. May 2013 A1
20130133965 Books May 2013 A1
20130184115 Urabe et al. Jul 2013 A1
20130190131 Versteyhe et al. Jul 2013 A1
20130226416 Seipold et al. Aug 2013 A1
20130303325 Carey et al. Nov 2013 A1
20130304344 Abe Nov 2013 A1
20130338888 Long et al. Dec 2013 A1
20140223901 Versteyhe et al. Aug 2014 A1
20140274540 Schoolcraft Sep 2014 A1
20140274552 Frink et al. Sep 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20150024899 Phillips Jan 2015 A1
20150051801 Quinn, Jr. et al. Feb 2015 A1
20150142281 Versteyhe et al. May 2015 A1
20150159741 Versteyhe et al. Jun 2015 A1
20150204429 Versteyhe et al. Jul 2015 A1
20150226294 Ziech et al. Aug 2015 A1
20150226298 Versteyhe et al. Aug 2015 A1
20150226299 Cooper et al. Aug 2015 A1
20150252881 Versteyhe Sep 2015 A1
20150354676 Versteyhe et al. Dec 2015 A1
20160033021 Cooper et al. Feb 2016 A1
20160047448 Versteyhe et al. Feb 2016 A1
20160069442 Versteyhe et al. Mar 2016 A1
20160109001 Schoolcraft Apr 2016 A1
20160123438 Ziech et al. May 2016 A1
20160131235 Phillips May 2016 A1
20160185353 Honma et al. Jun 2016 A1
20160281828 Haka Sep 2016 A1
20160290458 Taskiran et al. Oct 2016 A1
Foreign Referenced Citations (61)
Number Date Country
2011224083 Oct 2011 AU
101392825 Mar 2009 CN
101617146 Dec 2009 CN
202165536 Mar 2012 CN
1237380 Mar 1967 DE
3245045 Jun 1984 DE
102005010751 Sep 2006 DE
0156936 Oct 1985 EP
0210053 Jan 1987 EP
1061288 Dec 2000 EP
2113056 Jul 2012 EP
796188 Mar 1936 FR
1030702 Jun 1953 FR
1472282 Mar 1967 FR
2185076 Dec 1973 FR
2280451 Feb 1976 FR
2918433 Jan 2009 FR
1127825 Sep 1968 GB
2196892 May 1988 GB
2248895 Apr 1992 GB
H09119506 May 1997 JP
2008180214 Aug 2008 JP
2009058085 Mar 2009 JP
2011153583 Aug 2011 JP
WO-2006002457 Jan 2006 WO
WO-2006041718 Apr 2006 WO
WO-2007046722 Apr 2007 WO
WO-2007051827 May 2007 WO
WO-2008103543 Aug 2008 WO
WO-2011011991 Feb 2011 WO
WO-2012008884 Jan 2012 WO
WO-2012177187 Dec 2012 WO
WO-2013109723 Jul 2013 WO
WO-2013123117 Aug 2013 WO
WO-2014039438 Mar 2014 WO
WO-2014039439 Mar 2014 WO
WO-2014039440 Mar 2014 WO
WO-2014039447 Mar 2014 WO
WO-2014039448 Mar 2014 WO
WO-2014039708 Mar 2014 WO
WO-2014039713 Mar 2014 WO
WO-2014039846 Mar 2014 WO
WO-2014039900 Mar 2014 WO
WO-2014039901 Mar 2014 WO
WO-2014078583 May 2014 WO
WO-2014124291 Aug 2014 WO
WO-2014151889 Sep 2014 WO
WO-2014159755 Oct 2014 WO
WO-2014159756 Oct 2014 WO
WO-2014165259 Oct 2014 WO
WO-2014179717 Nov 2014 WO
WO-2014179719 Nov 2014 WO
WO-2014186732 Nov 2014 WO
WO-2014197711 Dec 2014 WO
WO-2015059601 Apr 2015 WO
WO-2015073883 May 2015 WO
WO-2015073887 May 2015 WO
WO-2015073948 May 2015 WO
WO-2015195759 Dec 2015 WO
WO-2015200769 Dec 2015 WO
WO-2016094254 Jun 2016 WO
Non-Patent Literature Citations (90)
Entry
Co-pending U.S. Appl. No. 15/067,427, filed Mar. 11, 2016.
Co-pending U.S. Appl. No. 15/067,752, filed Mar. 11, 2016.
Fallbrook Technologies. ‘NuVinci® Technology’, Feb. 26, 2013; [retrieved on Jun. 5, 2014]. Retrieved from internet: <URL: https://web.archive.org/web/20130226233109/http://www.fallbrooktech.com/nuvinci-technology.
Moore et al. A Three Revolute Cobot Using CVTs in Parallel. Proceedings of IMECE (1999) 6 pgs.
PCT/US2013/021890 International Preliminary Report on Patentability dated Jul. 31, 2014.
PCT/US2013/021890 International Search Report dated Apr. 10, 2013.
PCT/US2013/026037 International Preliminary Report on Patentability dated Aug. 28, 2014.
PCT/US2013/026037 International Search Report dated Jul. 15, 2013.
PCT/US2013/057837 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057837 International Search Report and Written Opinion dated Mar. 31, 2014.
PCT/US2013/057838 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057838 International Search Report and Written Opinion dated Jan. 17, 2014.
PCT/US2013/057839 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057839 International Search Report and Written Opinion dated Feb. 6, 2014.
PCT/US2013/057866 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057866 International Search Report dated Feb. 11, 2014.
PCT/US2013/057868 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057868 International Search Report and Written Opinion dated Apr. 9, 2014.
PCT/US2013/058309 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058309 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058318 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058318 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058545 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058545 International Search Report and Written Opinion dated Feb. 19, 2014.
PCT/US2013/058615 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058615 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058616 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058616 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/070177 International Preliminary Report on Patentability dated May 28, 2015.
PCT/US2013/070177 International Search Report and Written Opinion dated Apr. 14, 2014.
PCT/US2014/015352 International Search Report and Written Opinion dated May 27, 2014.
PCT/US2014/025001 International Preliminary Report on Patent ability dated Sep. 24, 2015.
PCT/US2014/025001 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/025004 International Preliminary Report on Patentability dated Oct. 1, 2015.
PCT/US2014/025004 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/025005 International Preliminary Report on Patentability dated Oct. 1, 2015.
PCT/US2014/025005 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/026619 International Preliminary Report on Patentability dated Sep. 24, 2015.
PCT/US2014/026619 International Search Report and Written Opinion dated Sep. 9, 2014.
PCT/US2014/036621 International Preliminary Report on Patentability dated Nov. 12, 2015.
PCT/US2014/036621 International Search Report and Written Opinion dated Sep. 4, 2014.
PCT/US2014/036623 International Preliminary Report on Patentability dated Nov. 12, 2015.
PCT/US2014/036623 International Search Report and Written Opinion dated Sep. 4, 2014.
PCT/US2014/038439 International Preliminary Report on Patentability dated Nov. 26, 2015.
PCT/US2014/038439 International Search Report and Written Opinion dated Sep. 30, 2014.
PCT/US2014/041124 International Preliminary Report on Patentability dated Dec. 17, 2015.
PCT/US2014/041124 International Search Report and Written Opinion dated Oct. 15, 2014.
PCT/US2014/065792 International Preliminary Report on Patentability dated Jun. 2, 2016.
PCT/US2014/065792 International Search Report and Written Opinion dated Apr. 9, 2015.
PCT/US2014/065796 International Preliminary Report on Patentability dated Nov. 6, 2015.
PCT/US2014/065796 International Search Report and Written Opinion dated Apr. 9, 2015.
PCT/US2014/065909 International Search Report and Written Opinion dated Feb. 19, 2015.
PCT/US2014/065909 Written Opinion dated Dec. 11, 2015.
PCT/US2014/065909 Written Opinion dated Jun. 6, 2016.
PCT/US2015/36170 International Search Report and Written Opinion dated Dec. 17, 2015.
PCT/US2015/37916 International Search Report and Written Opinion dated Sep. 29, 2015.
PCT/US2015/64087 International Search Report and Written Opinion dated Feb. 11, 2016.
U.S. Appl. No. 13/743,951 Office Action dated Aug. 19, 2015.
U.S. Appl. No. 13/743,951 Office Action dated Jan. 21, 2016.
U.S. Appl. No. 13/743,951 Office Action dated Mar. 18, 2015.
U.S. Appl. No. 14/017,054 Office Action dated Aug. 27, 2014.
U.S. Appl. No. 14/017,054 Office Action dated Dec. 12, 2014.
U.S. Appl. No. 14/175,584 Office Action dated Apr. 2, 2015.
U.S. Appl. No. 14/175,584 Office Action dated Dec. 3, 2015.
U.S. Appl. No. 14/210,130 Office Action dated Jun. 7, 2016.
U.S. Appl. No. 14/210,130 Office Action dated Nov. 20, 2015.
U.S. Appl. No. 14/378,750 Office Action dated Apr. 8, 2016.
U.S. Appl. No. 14/425,598 Office Action dated Jun. 14, 2016.
U.S. Appl. No. 14/425,600 Office Action dated May 16, 2016.
U.S. Appl. No. 14/425,842 Office Action dated Jul. 1, 2016.
U.S. Appl. No. 14/426,139 Office Action dated Oct. 6, 2015.
U.S. Appl. No. 14/542,336 Office Action dated Nov. 25, 2015.
U.S. Appl. No. 15/067,752 Office Action dated Jun. 30, 2016.
U.S. Appl. No. 60/616,399, filed Oct. 5, 2004.
U.S. Appl. No. 61/819,414, filed May 3, 2013.
Wong. The Temple of VTEC Asia Special Focus on the Multimatic Transmission. Temple of VTEC Asia. (5 pgs.) (2000).
Co-pending U.S. Appl. No. 15/209,487, filed Jul. 13, 2016.
Co-pending U.S. Appl. No. 15/215,179, filed Jul. 20, 2016.
PCT/US2016/027496 International Search Report and Written Opinion dated Jul. 8, 2016.
PCT/US2016/29853 International Search Report and Written Opinion dated Aug. 8, 2016.
U.S. Appl. No. 14/334,538 Office Action dated Jul. 29, 2016.
Co-pending U.S. Appl. No. 15/260,472, filed Sep. 9, 2016.
Co-pending U.S. Appl. No. 15/265,163, filed Sep. 14, 2016.
Co-pending U.S. Appl. No. 15/265,226, filed Sep. 14, 2016.
Co-pending U.S. Appl. No. 15/272,774, filed Sep. 22, 2016.
Co-pending U.S. Appl. No. 15/284,940, filed Oct. 4, 2016.
PCT/US2016/030930 International Search Report and Written Opinion dated Sep. 23, 2016.
PCT/US2016/038064 International Search Report and Written Opinion dated Sep. 7, 2016.
U.S. Appl. No. 14/425,600 Office Action dated Sep. 23, 2016.
U.S. Appl. No. 62/158,847, filed May 8, 2015.
Related Publications (1)
Number Date Country
20160298737 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
61905742 Nov 2013 US