Torque ripple control for an aircraft power train

Information

  • Patent Grant
  • 11628942
  • Patent Number
    11,628,942
  • Date Filed
    Thursday, November 21, 2019
    5 years ago
  • Date Issued
    Tuesday, April 18, 2023
    a year ago
Abstract
A method includes providing thrust to an aircraft through a power train from a heat engine connected to the power train. The method includes controlling an electric motor connected to the power train to counter torque ripple in the power train from the heat engine. A system includes a power train for providing thrust to an aircraft. A heat engine is connected to the power train. An electric motor is operatively connected to the power train. A controller is operatively connected to control the electric motor. The controller includes machine readable instructions configured to cause the controller to control the electric motor to counter torque ripple in the power train from the heat engine.
Description
BACKGROUND
1. Field

The present disclosure relates to hybrid aircraft, and more particularly to control of hybrid power plants for aircraft.


2. Description of Related Art

Traditional aircraft have heat engines that burn hydrocarbon fuel to produce the thrust needed for flight. Hybrid electric aircraft can use hydrocarbon burning engines in combination with electric motors. Hybrid electric aircraft have been proposed in a variety of different configurations.


The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved systems and methods for hybrid aircraft. This disclosure provides a solution for this need.


SUMMARY

A method includes providing thrust to an aircraft through a power train from a heat engine connected to the power train. The method includes controlling an electric motor connected to the power train to counter torque ripple in the power train from the heat engine.


The method can include detecting torque ripple and using feedback indicative of the torque ripple in the heat engine to control the electric motor. The method can include powering the power train with both the heat engine and the electric motor providing a combined torque during takeoff and climb, wherein the electric motor actively cancels torque ripple in the heat engine so that the combined torque has a lower amplitude than that of the torque ripple in the heat engine. The combined torque can be constant. The combined torque can be higher than peaks in the torque ripple of the heat engine.


The method can include powering the power train with the heat engine during cruise with zero net power delivered to the power train by the electric motor. The electric motor can alternate between positive, additive torque relative to the heat engine, and negative, subtractive torque relative to the heat engine to cancel the torque ripple. The electric motor can alternate between the positive, additive torque and the negative, subtractive torque without changing rotation direction of the electric motor. The method can include recuperating electrical energy from the electric motor into an electrical power storage system during the negative, subtractive torque. The heat engine and electric motor together can provide a combined torque having a magnitude that is between peaks and valleys in the torque ripple of the heat engine, e.g. wherein the combined torque is constant.


Providing thrust from the heat engine and power train can include providing the thrust from the heat engine to a combining gear box, and providing the thrust from the electric motor to the combining gear box in parallel mechanically with the heat engine. It is also contemplated that providing thrust from the heat engine and power train can include providing the thrust from the heat engine to a main gear box wherein the main gear box, heat engine, and electric motor are mechanically in series with one another. The heat engine and electric motor can be connected in mechanical series with at least one of a disconnect mechanism configured to allow independent rotation of the electric motor and heat engine, and/or a reduction gear box configured to allow rotation of the electric motor an heat engine at different rotational speeds from one another.


A system includes a power train for providing thrust to an aircraft. A heat engine is connected to the power train. An electric motor is operatively connected to the power train. A controller is operatively connected to control the electric motor. The controller includes machine readable instructions configured to cause the controller to control the electric motor to counter torque ripple in the power train from the heat engine.


A sensor can be operatively connected to the heat engine and to the controller to sense torque ripple in the heat engine and control the electric motor to counter the torque ripple with an active, closed control loop. A power storage system can be electrically connected to supply electrical power to the electric motor. The controller can include machine readable instructions configured to cause the electric motor to regenerate power to the power storage system during negative torque in the electric motor while countering torque ripple. The power train can include a combining gear box, wherein each of the heat engine and electric motor connect to the combining gear box in parallel with one another. The power train can include a main gear box with the electric motor and heat engine connected in series with one another and to the main gear box.


These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:



FIG. 1 is a schematic view of an embodiment of a system constructed in accordance with the present disclosure, showing a parallel configuration of the heat engine and electric motor;



FIG. 2 is a schematic view of an embodiment of a system constructed in accordance with the present disclosure, showing a series configuration of the heat engine and electric motor;



FIGS. 3 and 4 are plots showing the effect on combined torque during takeoff and climb without and with torque ripple control, respectively; and



FIGS. 5 and 6 are plots showing the effect on combined torque during cruise without and with torque ripple control, respectively.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an embodiment of a system in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100. Other embodiments of systems in accordance with the disclosure, or aspects thereof, are provided in FIGS. 2-6, as will be described. The systems and methods described herein can be used to control torque ripple in hybrid electric aircraft powertrains.


The system 100 includes a power train 102 for providing thrust to an aircraft. A heat engine 104 is connected to the power train 102. An electric motor 106 is operatively connected to the power train 102. The power train 102 includes a combining gear box 108, wherein each of the heat engine 104 and the electric motor 106 connect to the combining gear box 108 in parallel with one another. System 100 can provide providing thrust from the heat engine 104 and power train 102, which can include providing the thrust from the heat engine 104 to the combining gear box 108, and providing the thrust from the electric motor 106 to the combining gear box 108 in parallel mechanically with the heat engine 104. The combining gear box 108 in turn provides rotational power to a reduction gear box 110 which can be used to provide aircraft thrust, e.g. by turning a propeller or the like.


A controller 112 is operatively connected to control the electric motor 106. A power storage system 114, e.g. including a bank of rechargeable batteries, is be electrically connected to the controller 112 to supply electrical power to the electric motor 106. The controller 112 includes machine readable instructions configured to cause the controller 112 to control the electric motor 106 to counter torque ripple in the power train 102 from the heat engine 104. A sensor 116 is operatively connected to the heat engine 104, or another system location in the system 100 such as reduction gear box 110, power train 102, and/or combining gear box 108, and to the controller 112 to sense torque ripple in the heat engine 104 to generate feedback indicative of the torque ripple so the controller 112 can control the electric motor 106 to counter the torque ripple with an active, closed control loop. The controller can include machine readable instruction configured to cause the controller to perform motor control as described below.


With reference now to FIG. 2, another configuration is shown for the system 100 similar in most respects to the configuration shown in FIG. 1, but wherein the power train 102 includes a main reduction gear box 109 with the electric motor 106 and heat engine 104 connected in series with one another and to the main reduction gear box 109. In this configuration, the system 100 can providing thrust from the heat engine 104 and electric motor 106 to the main reduction gear box 109 wherein the main reduction gear box 109, heat engine 104, and electric motor 106 are mechanically in series with one another. The heat engine 104 and electric motor 106 can be connected in mechanical series with at least one of a disconnect mechanism 118 configured to allow independent rotation of the electric motor 106 and heat engine 104, and/or a reduction gear box 120 configured to allow rotation of the electric motor 106 and heat engine 104 at different rotational speeds from one another. Those skilled in the art will readily appreciate that disconnect mechanism 118 and reduction gear box can be omitted in suitable applications without departing from the scope of this disclosure. With respect to the controller 112, it operates similarly in both the configuration of FIG. 1 and the configuration of FIG. 2. It is contemplated that in the configuration of FIG. 1, reducing/eliminating torque ripple from the heat engine 104 can reduce wear and tear on the reduction gear box 110, which receives the combined torque from the combining gear box 108, extending the useful life of the reduction gear box 110 and or reducing component weight because of the reduced tendency for wear and tear. It is also contemplated that in the configuration shown in FIG. 2, reducing/eliminating torque ripple from the heat engine 104 can reduce wear and tear on the main reduction gear box 109, extending the useful life of the main reduction gear box 109.


With reference now to FIGS. 3 and 4 (reference characters listed in describing FIGS. 3 and 4 that are not found in FIGS. 3 and 4 can be found in FIGS. 1 and 2), during takeoff and climb the system 100 shown in FIGS. 1-2 can power the power train 102 with both the heat engine 104 and the electric motor 106 providing a combined torque 126. FIG. 3 plots the torque 122 from the electric motor 106, the torque 124 from the heat engine 104, and the combined torque 126 from both if there is no torque ripple control. In contrast, FIG. 4 shows the same plots of torques 122, 124, 126 when the controller 112 controls the electric motor 106 in a manner that controls torque ripple. The electric motor 106 actively cancels torque ripple in the heat engine 104 from the power train 102 so that the combined torque 126 has a lower amplitude than that of the torque ripple in the heat engine, i.e., in an ideal case the combined torque 126 is constant during takeoff and climb. If the torque ripple is eliminated, it can be said that the frequency of torque ripple in the combined torque 126 is reduced to zero. The combined torque 126 is higher than the highest peaks in the torque ripple of the torque 124 of the heat engine 104 in FIG. 4, however as other discussed below this is not necessarily always the case. The torque 122 from the electric motor 106 is out of phase in a counter-cyclic manner relative to the torque 124 from the heat engine 104, and has the same amplitude (i.e., the amplitude has the same magnitude but varies in the opposite direction over time), effectively canceling out the torque ripple in the combined torque. This is also true in FIGS. 5 and 6 described below.


With reference now to FIGS. 5 and 6 (reference characters listed in describing FIGS. 5 and 6 that are not found in FIGS. 5 and 6 can be found in FIGS. 1 and 2), during cruise the system 100 can power the power train 102 with the heat engine 104 with zero net power delivered to the power train 102 by the electric motor 106. FIG. 5 plots the torque 122 from the electric motor, which is zeroed out, the torque 124 from the heat engine, and the combined torque 126, which matches the torque 124, when there is no torque ripple control. In contrast, FIG. 6 shows the same plots of torques 122, 124, 126, when the controller 112 controls the electric motor in a manner that controls the torque ripple. The electric motor 106 can alternate between positive, additive torque relative to the heat engine 104, and negative, subtractive torque relative to the heat engine 104 to cancel the torque ripple. The electric motor 106 can alternate between the positive, additive torque and the negative, subtractive torque without changing rotation direction of the electric motor 106. The controller 112 can control the electric motor 106 to recuperate electrical energy from the electric motor 106 into the electrical power storage system 114 during the negative, subtractive torque. The heat engine 104 and electric motor 106 together can provide a combined torque 126 having a magnitude that is between peaks and valleys in the torque ripple of the torque 124 of the heat engine 104, e.g. wherein the combined torque 126 is ideally constant during cruise.


Using the controller 112 and electric motor 106 to reduce and/or eliminate torque ripple in the power train 102, there are potential advantages including weight savings. For instance, with the systems and methods disclosed herein, a flywheel and/or torque damping system, and the associated weight, can be eliminated while still protecting gear boxes from the wear and tear that could otherwise be caused by torque ripple. The torque ripple is shown and described herein as a sine wave, however those skilled in the art will readily appreciate that torque ripple reduction as disclosed herein can be used on any form of toque ripple without departing from the scope of this disclosure.


The methods and systems of the present disclosure, as described above and shown in the drawings, provide for reduction or elimination of torque ripple in hybrid electric power trains. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.

Claims
  • 1. A method comprising: providing thrust to an aircraft through a power train from a heat engine connected to the power train;controlling an electric motor connected to the power train to counter torque ripple in the power train from the heat engine; anddetecting torque ripple and using feedback indicative of the torque ripple in the heat engine to control the electric motor, wherein a sensor operatively connected to a controller senses the torque ripple in the heat engine and controls the electric motor to counter the torque ripple with an active, closed control loop.
  • 2. The method as recited in claim 1, further comprising powering the power train with both the heat engine and the electric motor providing a combined torque during takeoff and climb, wherein the electric motor actively cancels torque ripple in the heat engine so that the combined torque has a lower amplitude than that of the torque ripple in the heat engine.
  • 3. The method as recited in claim 2, wherein the combined torque is constant.
  • 4. The method as recited in claim 2, wherein the combined torque is higher than peaks in the torque ripple of the heat engine.
  • 5. The method as recited in claim 1, further comprising powering the power train with the heat engine during cruise with zero net power delivered to the power train by the electric motor.
  • 6. The method as recited in claim 5, wherein the electric motor alternates between positive, additive torque relative to the heat engine, and negative, subtractive torque relative to the heat engine to cancel the torque ripple.
  • 7. The method as recited in claim 6, wherein the electric motor alternates between the positive, additive torque and the negative, subtractive torque without changing rotation direction of the electric motor.
  • 8. The method as recited in claim 6, further comprising recuperating electrical energy from the electric motor into an electrical power storage system during the negative, subtractive torque.
  • 9. The method as recited in claim 5, wherein the heat engine and electric motor together provide a combined torque having a magnitude that is between peaks and valleys in the torque ripple of the heat engine.
  • 10. The method as recited in claim 9, wherein the combined torque is constant.
  • 11. The method as recited in claim 1, wherein providing thrust from the heat engine and power train includes providing the thrust from the heat engine to a combining gear box, and providing the thrust from the electric motor to the combining gear box in parallel mechanically with the heat engine.
  • 12. The method as recited in claim 1, wherein providing thrust from the heat engine and power train includes providing the thrust from the heat engine to a main gear box wherein the main gear box, heat engine, and electric motor are mechanically in series with one another.
  • 13. The method as recited in claim 12, wherein the heat engine and electric motor are connected in mechanical series with at least one of: a disconnect mechanism configured to allow independent rotation of the electric motor and heat engine; and/ora reduction gear box configured to allow rotation of the electric motor and heat engine at different rotational speeds from one another.
  • 14. A system comprising: a power train for providing thrust to an aircraft;a heat engine connected to the power train;an electric motor operatively connected to the power train, wherein the power train further includes a combining gearbox, wherein each of the heat engine and electric motor connect to the combining gear box in parallel with one another, wherein the combining gearbox provides rotational power to a reduction gearbox;a controller operatively connected to control the electric motor wherein the controller includes machine readable instructions configured to cause the controller to:control the electric motor to counter torque ripple in the power train from the heat engine; anda sensor operatively connected to any one of the heat engine, the reduction gearbox, the power train and/or the combining gearbox and to the controller to sense torque ripple in the heat engine to generate feedback indicative of the torque ripple so the controller can control the electric motor to counter the torque ripple with an active, closed control loop.
  • 15. The system as recited in claim 14, further comprising a power storage system operatively connected to the controller and electrically connected to supply electrical power to the electric motor.
  • 16. The system as recited in claim 15, wherein the controller includes machine readable instructions configured to cause the electric motor to regenerate power to the power storage system during negative torque in the electric motor while countering torque ripple.
  • 17. A system comprising: a power train for providing thrust to an aircraft;a heat engine connected to the power train;an electric motor operatively connected to the power train, wherein the power train further includes a main reduction gearbox, wherein the heat engine and the electric motor are connected in series with one another and with the main reduction gearbox,a disconnect mechanism operatively connected between the electric motor and the heat engine configured to allow independent rotation of any one of the heat engine, the electric motor, and/or a reduction gearbox connected between the disconnect mechanism and the heat engine;a controller operatively connected to control the electric motor wherein the controller includes machine readable instructions configured to cause the controller to: control the electric motor to counter torque ripple in the power train from the heat engine; anda sensor operatively connected to any one of the heat engine, the reduction gearbox, the power train and/or the combining gearbox and to the controller to sense torque ripple in the heat engine to generate feedback indicative of the torque ripple so the controller can control the electric motor to counter the torque ripple with an active, closed control loop.
  • 18. The system as recited in claim 17, further comprising power storage system electrically connected to supply electrical power to the electric motor.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 62/812,342 filed Mar. 1, 2019, which is incorporated by reference herein in its entirety.

US Referenced Citations (148)
Number Name Date Kind
6179072 Hou Jan 2001 B1
6198183 Baeumel et al. Mar 2001 B1
6335581 Warnke Jan 2002 B1
6336070 Lorenz Jan 2002 B1
6427441 Wustefeld et al. Aug 2002 B2
6537047 Walker Mar 2003 B2
6692395 Rodeghiero et al. Feb 2004 B2
7022042 Fleytman Apr 2006 B2
7098569 Ong et al. Aug 2006 B2
7247967 Ionel et al. Jul 2007 B2
7303497 Wige Dec 2007 B1
7316629 Nakagawa et al. Jan 2008 B2
7345398 Purvines et al. Mar 2008 B2
7398946 Marshall Jul 2008 B1
7418820 Harvey et al. Sep 2008 B2
7471026 Bender Dec 2008 B2
7503173 Dong et al. Mar 2009 B2
7726426 Beck et al. Jun 2010 B2
7827787 Cherney et al. Nov 2010 B2
7867122 Jones Jan 2011 B2
7958725 Elliott Jun 2011 B2
8217544 Osada et al. Jul 2012 B2
8342995 Grant Jan 2013 B2
8382635 Tampieri Feb 2013 B2
8435156 Christ May 2013 B2
8446121 Parsa et al. May 2013 B1
8471429 Kaiser et al. Jun 2013 B2
8495870 Sumiyoshi et al. Jul 2013 B2
8531076 Stabenow et al. Sep 2013 B2
8535197 Scekic Sep 2013 B2
8584452 Lloyd Nov 2013 B2
8596054 Law et al. Dec 2013 B2
8621860 Hennemann et al. Jan 2014 B2
8622859 Babbitt et al. Jan 2014 B2
8660761 Anderson et al. Feb 2014 B2
8663047 Schroth et al. Mar 2014 B2
8710786 Parsa et al. Apr 2014 B1
8747267 Sutherland Jun 2014 B2
8915812 Haglsperger et al. Dec 2014 B2
8943820 Carlton et al. Feb 2015 B2
8967532 Vialle Mar 2015 B2
9039566 Rudy May 2015 B2
9051996 During et al. Jun 2015 B2
9096230 Ries et al. Aug 2015 B2
9102223 Greenwood Aug 2015 B2
9109682 Lee et al. Aug 2015 B2
9206885 Rekow et al. Dec 2015 B2
9261182 Kato et al. Feb 2016 B2
9303727 Reimann et al. Apr 2016 B2
9343939 Schutten et al. May 2016 B2
9401631 Wu et al. Jul 2016 B2
9447858 Weeramantry et al. Sep 2016 B2
9458864 Hyon et al. Oct 2016 B2
9546468 Bang Jan 2017 B2
9551400 Hiasa et al. Jan 2017 B2
9683585 Akiyama et al. Jun 2017 B2
9735638 Herz et al. Aug 2017 B2
9963855 Jagoda May 2018 B2
9976437 McCune et al. May 2018 B2
10000275 Tendola et al. Jun 2018 B2
10024341 Zhang et al. Jul 2018 B2
10035505 Kawai Jul 2018 B2
10086946 Zywiak et al. Oct 2018 B1
10122227 Long Nov 2018 B1
10183744 Gamble Jan 2019 B2
10287917 Schwarz et al. May 2019 B2
10374477 Niergarth et al. Aug 2019 B2
20050178893 Miller et al. Aug 2005 A1
20050258306 Barocela et al. Nov 2005 A1
20060016196 Epstein Jan 2006 A1
20060016197 Epstein Jan 2006 A1
20060056971 D'Anna Mar 2006 A1
20060237583 Fucke et al. Oct 2006 A1
20070170307 de la Cierva Hoces Jul 2007 A1
20070264124 Mueller et al. Nov 2007 A1
20080141921 Hinderks Jun 2008 A1
20080145221 Sun et al. Jun 2008 A1
20090050103 Heaton Feb 2009 A1
20090229897 Yutani et al. Sep 2009 A1
20090267555 Schulz Oct 2009 A1
20100264724 Nelson et al. Oct 2010 A1
20100285747 Bauer et al. Nov 2010 A1
20110215584 Prokopich Sep 2011 A1
20110236218 Russ et al. Sep 2011 A1
20110243566 Truong Oct 2011 A1
20110256973 Werner et al. Oct 2011 A1
20110266995 Winfield et al. Nov 2011 A1
20120025032 Hopdjanian et al. Feb 2012 A1
20120137684 Yogev et al. Jun 2012 A1
20120168557 Edelson et al. Jul 2012 A1
20120227389 Hinderks Sep 2012 A1
20120239228 Vos Sep 2012 A1
20120327921 Schirrmacher et al. Dec 2012 A1
20130026304 Wang Jan 2013 A1
20130082135 Moret Apr 2013 A1
20130119841 Graf et al. May 2013 A1
20130168489 McIntee Jul 2013 A1
20130181088 Casado Montero et al. Jul 2013 A1
20130227950 Anderson et al. Sep 2013 A1
20130287574 Ebbesen et al. Oct 2013 A1
20130300120 Podrog Nov 2013 A1
20130341934 Kawanishi Dec 2013 A1
20140010652 Suntharalingam Jan 2014 A1
20140027568 Fleddermann et al. Jan 2014 A1
20140054411 Connaulte et al. Feb 2014 A1
20140117148 Dyrla et al. May 2014 A1
20140203739 Chantriaux et al. Jul 2014 A1
20140248168 Chantriaux et al. Sep 2014 A1
20140283519 Mariotto et al. Sep 2014 A1
20140318132 Podrog Oct 2014 A1
20150028594 Mariotto Jan 2015 A1
20150076949 Alim Mar 2015 A1
20150083852 Moser et al. Mar 2015 A1
20150151844 Anton et al. Jun 2015 A1
20150274306 Sheridan Oct 2015 A1
20150311755 Hiebl et al. Oct 2015 A1
20160010589 Rolt Jan 2016 A1
20160016670 Sautreuil et al. Jan 2016 A1
20160076446 Bailey Noval et al. Mar 2016 A1
20160218930 Toilion et al. Jul 2016 A1
20160305470 Remer et al. Oct 2016 A1
20170016398 Thiriet et al. Jan 2017 A1
20170016399 Bedrine et al. Jan 2017 A1
20170072755 Zhou et al. Mar 2017 A1
20170096233 Mercier-Calvairac et al. Apr 2017 A1
20170152055 Mercier-Calvairac et al. Jun 2017 A1
20170203839 Giannini et al. Jul 2017 A1
20170240273 Yuen Aug 2017 A1
20170241347 Marconi et al. Aug 2017 A1
20170284408 Ricordeau et al. Oct 2017 A1
20170305541 Vallart et al. Oct 2017 A1
20170328282 Jensen et al. Nov 2017 A1
20170370344 Kassianoff Dec 2017 A1
20180002025 Lents et al. Jan 2018 A1
20180003071 Lents et al. Jan 2018 A1
20180003072 Lents et al. Jan 2018 A1
20180003109 Lents et al. Jan 2018 A1
20180118335 Gamble et al. May 2018 A1
20180127103 Cantemir May 2018 A1
20180194483 Schwoller Jul 2018 A1
20180251226 Fenny et al. Sep 2018 A1
20180252115 Himmelmann et al. Sep 2018 A1
20180265206 Himmelmann Sep 2018 A1
20180266329 Mackin Sep 2018 A1
20180273197 Chang et al. Sep 2018 A1
20180319483 Mayer et al. Nov 2018 A1
20180339786 Thomassin Nov 2018 A1
20180346111 Karem et al. Dec 2018 A1
Foreign Referenced Citations (71)
Number Date Country
8701724 Jun 2009 BR
PI0702882 Mar 2011 BR
PI0622106 Dec 2011 BR
PI1104839 Nov 2012 BR
2226487 Sep 2010 EP
2332235 Jun 2011 EP
2478608 Jul 2012 EP
2238362 Mar 2015 EP
3292041 Mar 2018 EP
3327526 May 2018 EP
3327527 May 2018 EP
3350895 Jul 2018 EP
3405654 Nov 2018 EP
3423354 Jan 2019 EP
2006231974 Sep 2006 JP
2006270778 Oct 2006 JP
2006290187 Oct 2006 JP
2007137423 Jun 2007 JP
4215012 Jan 2009 JP
2009534928 Sep 2009 JP
2011516334 May 2011 JP
4973256 Jul 2012 JP
2013193533 Sep 2013 JP
5415400 Feb 2014 JP
2014076771 May 2014 JP
2014159255 Sep 2014 JP
2015077089 Apr 2015 JP
2015077091 Apr 2015 JP
2015137092 Jul 2015 JP
5867219 Feb 2016 JP
2017074804 Apr 2017 JP
2017150665 Aug 2017 JP
6199496 Sep 2017 JP
2017165131 Sep 2017 JP
6213494 Oct 2017 JP
2017534514 Nov 2017 JP
6376042 Aug 2018 JP
6397447 Sep 2018 JP
6430885 Nov 2018 JP
6433492 Dec 2018 JP
20070039699 Apr 2007 KR
20080086714 Sep 2008 KR
20080005377 Nov 2008 KR
20090110373 Oct 2009 KR
20110032973 Mar 2011 KR
20110087661 Aug 2011 KR
20120140229 Dec 2012 KR
20130006379 Jan 2013 KR
101277645 Jun 2013 KR
20130142491 Dec 2013 KR
101438289 Sep 2014 KR
101572184 Nov 2015 KR
101659783 Sep 2016 KR
20160143599 Dec 2016 KR
20170004299 Jan 2017 KR
101713800 Mar 2017 KR
101797011 Nov 2017 KR
2007086213 Aug 2007 WO
2011005066 Jan 2011 WO
2011107718 Sep 2011 WO
2011144188 Nov 2011 WO
2014108125 Jul 2014 WO
2014134506 Sep 2014 WO
2015107368 Jul 2015 WO
2015145036 Oct 2015 WO
2016074600 May 2016 WO
2017114643 Jul 2017 WO
2018044757 Mar 2018 WO
2018106137 Jun 2018 WO
2018191769 Oct 2018 WO
2018211227 Nov 2018 WO
Related Publications (1)
Number Date Country
20200277071 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62812342 Mar 2019 US