1. Field of the Invention
This invention generally relates to tools for installing and removing a torque sensor onto an axle. More specifically, the present invention relates to a torque sensor insertion tool for installing a torque sensor onto a crank axle in a bottom bracket of a bicycle frame and a torque sensor deinsertion tool for removing a torque sensor onto a crank axle in a bottom bracket of a bicycle frame.
2. Background Information
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. Recently, bicycles have been provided with cycle computers to inform the rider of various traveling conditions of the bicycle.
Bicycles are sometimes equipped with a torque sensor (e.g., a torque-detecting device) for detecting torque acting on an axle. One example of a torque sensor that is being developed uses magnetostrictive effects wherein magnetic force varies according to strain (see Japanese Laid-Open Patent Application Nos. 3-269330 and 2001-289720, for example).
The torque sensor disclosed in Japanese Laid-Open Patent Application No. 3-269330 has two solid shafts disposed concentrically, a thin cylindrical shaft connected in series between the two solid shafts, and a detection coil disposed on the external periphery of the thin cylindrical shaft. The thin cylindrical shaft has an effective surface area that is sufficiently smaller than that of the two solid shafts, and the solid shafts are magnetized in one direction along an axial core line. Magnetostrictive elements are affixed to the external peripheral surface of the thin cylindrical shaft. Two magnetostrictive elements are used, and these elements have uniaxial magnetic anisotropy so that their easy magnetization axes intersect. Disposing the magnetostrictive elements on the thin cylindrical shafts in this manner makes it possible to increase the amount of strain created in the magnetostrictive elements and to increase the sensitivity of detection even in cases in which the rotational torque is small.
In Japanese Laid-Open Patent Application No. 2001-289720, the torque sensor is disclosed as having a sleeve with a magnetostrictive pattern formed in the external peripheral surface by inclining magnetostrictive members towards the core, a torque transmission shaft that fits into the internal peripheral surface of the sleeve, and a detection coil disposed on the external periphery of the sleeve. Concavities and convexities are formed in the external peripheral surface of the torque transmission shaft, and a hollow part is formed in the internal periphery. The sleeve is plastically bonded to the torque transmission shaft by expanding the diameter of the hollow part.
In U.S. patent application Ser. No. ______ (Attorney Docket #SN-US070284), a cylindrical torsion-detecting sleeve member (torque sensor unit) is provided on a crank axle for transmitting a torque applied to the crank axle that is configured to be received inside a bottom bracket. The cylindrical torsion-detecting sleeve member basically includes a pair of cylindrical torque-acting parts, a torsion signal generator and a torsion converter. The cylindrical torque-acting parts are disposed at a first and second locations that are axial spaced apart. The torsion signal generator is disposed axially between the first and second torque-acting parts to at least partially form an external peripheral surface between the first and second torque-acting parts. The torsion converter is operatively disposed between the torsion signal generator and at least one of the first and second torque-acting parts for converting torsion transmitted from the at least one of the first and second torque-acting parts to the torsion signal generator.
In the torsion-detecting sleeve member (torque sensor unit) disclosed in U.S. patent application Ser. No. ______ (Attorney Docket #SN-US070284), the torsion-detecting sleeve member (torque sensor unit) needs to be installed and removed without mechanical distorting torsion-detecting sleeve member. If a strong (press or pull) force is applied to one of the ends of the torsion-detecting sleeve member, then the torsion-detecting sleeve member may change shape and become unusable. Thus, it is somewhat difficult to insert and remove the torsion-detecting sleeve member (torque sensor unit) onto a crank axle.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved torque sensor insertion tool for installing a torque sensor unit onto a crank axle in a bottom bracket of a bicycle frame and an improved a torque sensor deinsertion tool for removing a torque sensor unit from a crank axle in a bottom bracket of a bicycle frame. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
One object of the present invention is to provide a torque sensor insertion tool for installing torsion-detecting sleeve member onto a crank axle in a relatively easy and simply manner without substantially changing its shape.
Another object of the present invention is to provide a torque sensor deinsertion tool for removing torsion-detecting sleeve member onto a crank axle in a relatively easy and simply manner without substantially changing its shape.
In accordance with a first aspect of the invention, a torque sensor insertion tool is provided for installing a torque sensor disposed on an axle. The torque sensor insertion tool of this aspect of the invention basically comprises an axle attachment structure, a tubular sensor supporting structure and a tubular sensor moving structure. The axle attachment structure includes a first guide portion, a sensor supporting portion configured to support an inner surface of the torque sensor, and an axle attachment portion configured to fix the axle thereto. The tubular sensor supporting structure includes a first axial connecting portion, a first sensor abutment surface facing in a first axial direction for contacting a first abutment portion of the torque sensor, and a first tube portion having a first internal bore with an inner width dimensioned relative to an outer width of the axle attachment structure to form a predetermined annular sensor receiving space therebetween for receiving the torque sensor when the axle attachment structure is located in the first internal bore. The tubular sensor moving structure includes a second guide portion configured to coaxially mate with the first guide portion, a second axial connecting portion for operatively engaging the first axial connecting portion to effectively interconnect the tubular sensor moving structure with the tubular sensor supporting structure to transmit an insertion force therebetween during insertion of the torque sensor on the axle, a second tube portion having a second internal bore to receive a portion of the axle attachment structure therein, and a second sensor abutment surface arranged to abut against the torque sensor when the torque sensor insertion tool is assembled in a torque sensor insertion arrangement.
In accordance with a second aspect of the invention, a torque sensor deinsertion tool for removing a torque sensor disposed on an axle. The torque sensor deinsertion tool of this aspect of the invention basically comprises an outer member, an inner member and a nut member. The outer member includes a first end, a second end with a bottom bracket engagement portion and an internal tubular surface with an internal thread. The inner member includes a first end and a second end with an external thread. The inner member is disposed within the outer member when the torque sensor deinsertion tool is assembled in a torque sensor deinsertion arrangement. The nut member includes an external thread threadedly engaged with the internal thread of the outer member, with the nut member contacting the first end of the inner member when in the torque sensor deinsertion arrangement.
These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the present invention.
Referring now to the attached drawings which form a portion of this original disclosure:
Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Referring initially to
As shown in
The crank axle 22 is a hollow cylindrical member that is rotatably mounted on the hanger part 14 via the bearings 31 and 32 and the first and second threaded adapters 25 and 26. The crank axle 22 has a crank mounting part 22a with a tapered surface formed in the external peripheral surface at the left end of the crank axle 22. The left crank 24 is integrally and rotatably mounted on the crank mounting part 22a. The right end of the crank axle 22 has a large-diameter serration part 22b that is press-fitted into the mounting hole 23a of the gear crank 23 to allow the gear crank 23 to be fastened by crimping. Thus, the right end of the crank axle 22 is fixedly and rigidly coupled to the gear crank 23 so that that they rotate together as an integrated unit.
As seen in
The torque sensor 18 comprises a torsion-detecting sleeve member 40, a torsion signal detector 42 and a rotational torque output unit 44, as shown in
The torsion-detecting sleeve member 40 has a cylindrical sleeve main body 41 with first and second cylindrical members 41a and 41b made of, e.g., a comparatively rigid metal such as SK5 or any other suitable carbon tool steel, and a third cylindrical member 41c made of, e.g., SUS 304 or any other suitable nonmagnetic metal and disposed between the first and second cylindrical members 41a and 41b, as shown in
The first and second cylindrical torque-acting parts 50a and 50b and the torsion converter parts 54a and 54b are disposed respectively on the first and second cylindrical members 41a and 41b. The torsion signal generator 52 is disposed on the third cylindrical member 41c. The first and second cylindrical torque-acting parts 50a and 50b are provided separately to the ends of the sleeve member 40, i.e., to two locations at the axially outward ends of the first and second cylindrical members 41a and 41b. The first and second cylindrical torque-acting parts 50a and 50b are fastened separately to first and second press-fitted members 56a and 56b, which are fastened to the crank axle 22 by being press fitted from both end sides. In the torque sensor 18 configured in this manner, when the crank axle 22 twists, torsion is created between the first and second cylindrical torque-acting parts 50a and 50b via the first and second press-fitted members 56a and 56b.
As seen in
As seen in
The first guide portion 71 cooperates with the tubular sensor moving structure 63, as explained below, for linearly guiding the torsion-detecting sleeve member 40. In particular, the first guide portion 71 is an externally threaded portion with an external thread 71a and a pair of longitudinal grooves 71b. The sensor supporting portion 72 is a cylindrical portion with an outer diameter that is dimensioned to be substantially identical to the inner diameter of the torsion-detecting sleeve member 40. Thus, the sensor supporting portion 72 is configured to support an inner surface of the torsion-detecting sleeve member 40. Moreover, preferably, the outer diameter is substantially identical to the outer diameter of the external peripheral surface of the crank mounting part 22a such that the torsion-detecting sleeve member 40 can be easily inserted onto the crank mounting part 22a of the crank axle 22. The axle attachment portion 73 is configured to be fixedly coupled to the crank mounting part 22a of the crank axle 22. In this illustrated embodiment, the axle attachment portion 73 is an externally threaded portion with an external thread 73a that threadedly engages the thread hole 33 of the crank axle 22.
As seen in
The first axial connecting portion 74 is an internally threaded portion with an internal thread 74a. As explained below, the internal thread 74a of the first axial connecting portion 74 cooperates with the tubular sensor moving structure 63 such that the axial facing end surface 82a of the adjustable nut 82 directly abuts (contacts) against an axial facing end surface 81a of the outer tubular member 81. Thus, the adjustable nut 82 transmits an axially directed force from the tubular sensor moving structure 63 through the outer tubular member 81 to the second press-fitted member 56b which forms an end flange of the torsion-detecting sleeve member 40. In other words, the first sensor abutment surface 75 faces in a first axial direction for contacting the second press-fitted member 56b (e.g., a first abutment portion) of the torsion-detecting sleeve member 40. The first sensor abutment surface 75 directly abuts (contacts) against the second press-fitted member 56b (end flange) of the torsion-detecting sleeve member 40 to apply a pressing force to the torsion-detecting sleeve member 40 during installation of the torsion-detecting sleeve member 40 onto the crank axle 22.
As explained below, the internal thread 74a of the first axial connecting portion 74 also cooperates with the tubular sensor moving structure 63 such that the tubular sensor moving structure 63 contacts the first press-fitted member 56a which forms an end abutment of the torsion-detecting sleeve member 40. Thus, the tubular sensor moving structure 63 contacts the first press-fitted member 56a to support to the first press-fitted member 56a (end abutment) of the torsion-detecting sleeve member 40 during installation of the torsion-detecting sleeve member 40 onto the crank axle 22. Preferably, the pressing force from the tubular sensor moving structure 63 on the first press-fitted member 56a of the torsion-detecting sleeve member 40 is nearly zero during installation of the torsion-detecting sleeve member 40 onto the crank axle 22.
The first tube portion 76 has a first internal bore 76a with an inner width or diameter that is dimensioned relative to an outer width of the sensor supporting portion 72 of the axle attachment structure 61 to form a predetermined annular sensor receiving space therebetween for receiving the torsion-detecting sleeve member 40 when the axle attachment structure 61 is located in the first internal bore 76a.
As seen in
The second guide portion 77 is configured to coaxially mate with the first guide portion 71. In particular, the second guide portion 77 includes an internal thread 77a that is threadedly engaged with the external thread 71a of the first guide portion 71. Thus, the threads 71a and 77a are mating threads. Preferably, the internal thread 77a of the insertion nut 85 is designed with a screw torque of 12 kgf/cm such that the threads 71a and 77a are configured with to cooperate with each other to apply a propulsive force of 42 kgf/cm to the torsion-detecting sleeve member 40 during installation of the torsion-detecting sleeve member 40 onto the crank axle 22.
The second axial connecting portion 78 is configured and arranged for operatively engaging the first axial connecting portion 74 to effectively interconnect the tubular sensor moving structure 63 with the tubular sensor supporting structure 62 to transmit an insertion or pressing force therebetween during insertion or installation of the torsion-detecting sleeve member 40 onto the crank axle 22.
The second tube portion 79 has a second internal bore 79a to receive a portion of the first guide portion 71 of the axle attachment structure 61 therein. The second internal bore 79a of the second tube portion 79 is dimensioned to be coaxially arranged about the first guide portion 71 with a predetermined amount of clearance therebetween.
The second sensor abutment surface 80 abuts (contacts) the first press-fitted member 56a to support to the first press-fitted member 56a (end abutment) of the torsion-detecting sleeve member 40 during installation of the torsion-detecting sleeve member 40 onto the crank axle 22. Preferably, the pressing force from the tubular sensor moving structure 63 on the first press-fitted member 56a of the torsion-detecting sleeve member 40 is nearly zero during installation of the torsion-detecting sleeve member 40 onto the crank axle 22.
In this embodiment, when the insertion nut 85 is screwed onto the axle attachment structure 61 by a tool (e.g. wrench), the second press-fitted member 56b (flange) of the torsion-detecting sleeve member 40 is pushed by the outer tubular member 81 via the inner tubular member 83. At the same time, the first press-fitted member 56a (end abutment) of the torsion-detecting sleeve member 40 is supported by the inner tubular member 83. Since a contact (support) point between the first press-fitted member 56a (end abutment) of the torsion-detecting sleeve member 40 and the inner tubular member 83 receives a counter pushing force from the first tube member, the first press-fitted member 56a (end abutment) of the torsion-detecting sleeve member 40 does not receives strong push power from the inner tubular member 83. But the first press-fitted member 56a (end abutment) of the torsion-detecting sleeve member 40 is supported by the inner tubular member 83. Thus, the torsion-detecting sleeve member 40 is inserted to the crank axle 22 without shape changing.
Referring now to
In this illustrated embodiment, the torque sensor insertion tool 120 basically includes an axle attachment structure 161, a tubular sensor supporting structure 162 and a tubular sensor moving structure 163. The torque sensor insertion tool 120 is configured and arranged for installing the torsion-detecting sleeve member 40 (the torsion sensor unit) onto the crank axle 22. Basically, the axle attachment structure 161 is an axle extension member that is fixedly attached to the left end of the crank axle 22. The axle attachment structure 161 is configured and arranged to support the inner periphery of the torsion-detecting sleeve member 40 (the torsion sensor unit). The tubular sensor supporting structure 162 is configured and arranged to support the outer periphery of the torsion-detecting sleeve member 40 (the torsion sensor unit). The tubular sensor moving structure 163 is configured and arranged to move the torsion-detecting sleeve member 40 (the torsion sensor unit) from a position disposed between the axle attachment structure 161 and the tubular sensor supporting structure 62 (
The axle attachment structure 161 includes a first guide portion 171, a sensor supporting portion 172 and an axle attachment portion 173. In this illustrated embodiment, the first guide portion 171, the sensor supporting portion 172 and the axle attachment portion 173 are integrally formed as a one-piece, unitary member from a hard, rigid material. The axle attachment structure 161 is fixed to the crank axle 22 so as to form an extension of the crank axle 22.
In this illustrated embodiment, the tubular sensor supporting structure 162 includes a first axial connecting portion 174, a first sensor abutment surface 175 and a first tube portion 176. Here, the first axial connecting portion 174 is integrally formed with the first tube portion 176 as a one-piece, unitary member.
In this illustrated embodiment, the tubular sensor moving structure 163 includes a second guide portion 177, a second axial connecting portion 178, a second tube portion 179 and a second sensor abutment surface 180. Here, the second guide portion 177, the second axial connecting portion 178, the second tube portion 179 and the second sensor abutment surface 80 are all integrally formed as a one-piece, unitary member.
Referring now to
As best seen in
The bottom bracket engagement portion 191d includes an annular flange for receiving a tool or for being gripped by a user's hand to thread the outer member 191 into the hanger part 14. This flange of the bottom bracket engagement portion 191d also abuts against the hanger part 14 when the outer member 191 is completely attached to the hanger part 14. The outer member 191 has an internal tubular surface with an internal thread 195. The outer member 191 is a hard rigid member that is formed as a one-piece, unitary member from a suitable material such as a metallic material.
As best seen in
As best seen in
In understanding the scope of the present invention, the term “configured” as used herein to describe a component, section or portion of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function. In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “portion,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single portion or a plurality of parts. As used herein to describe the present invention, the following directional terms “forward, rearward, above, downward, vertical, horizontal, below and transverse” as well as any other similar directional terms refer to those directions of a bicycle equipped with the present invention. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to a bicycle equipped with the present invention as used in the normal riding position. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.