Torque wrenches are commonly used for accurate application of torque to fasteners, such as nuts or bolts. However, fasteners may be located in confined spaces, requiring the use of wrench extensions and/or adaptors to apply torque. When using extensions or adaptors with torque wrenches, correction factors may be required to ensure that a proper torque is being delivered to the fastener. Correction factors are related to the geometry of the extensions or adaptors and must be computed for each operation requiring a different extension or adaptor and/or a different torque. Such computations are time consuming and may be subject to error.
Accordingly, apparatuses and methods, intended to address the above-identified concerns, would find utility.
The following is a non-exhaustive list of examples, which may or may not be claimed, of the subject matter according the present disclosure.
One example of the present disclosure relates to a torque-wrench attachment configured to be coupled to a torque-wrench handle. The torque-wrench handle defines a first longitudinal central axis and comprises a torque-wrench handle barrel and a force-application member, rotatable relative to the torque-wrench handle barrel about a click-pivot axis perpendicular to the first longitudinal central axis. The torque-wrench attachment comprises a chassis configured to be coupled to the torque-wrench handle barrel. The torque-wrench attachment also comprises a wrench head comprising a second longitudinal central axis and a torque axis. The wrench head is shaped to engage at least one of a fastener or a torque-application adaptor aligned with the torque axis. The second longitudinal central axis and the torque axis have an intersection point. The torque axis of the wrench head has an adjustable angle relative to the first longitudinal central axis of the torque-wrench handle when the chassis is coupled to the torque-wrench handle barrel and aligned with the first longitudinal central axis. The torque-wrench attachment also comprises a link pivotally coupled to the chassis and the wrench head. The torque-wrench attachment additionally comprises a translating element pivotally coupled to the wrench head and linearly movable relative to the chassis. The translating element comprises a contact surface having a centroid and configured to receive a first force from the force-application member when the chassis is coupled to the torque-wrench handle barrel and aligned with the first longitudinal central axis, the wrench head engages the fastener, and a second force is applied to the torque-wrench handle in an opposite direction to the first force. When the chassis is coupled to the torque-wrench handle barrel and aligned with the first longitudinal central axis, the contact surface of the translating element is movable along the first longitudinal central axis of the torque-wrench handle, and a moment arm between the click-pivot axis and the centroid of the contact surface of the translating element along the first longitudinal central axis of the torque-wrench handle varies as a function of the adjustable angle between the torque axis of the wrench head and the first longitudinal central axis.
Another example of the present disclosure relates to a torque wrench comprising a torque-wrench handle defining a first longitudinal central axis and comprising a torque-wrench handle barrel. The torque wrench also comprises a click-type torque-wrench mechanism comprising a force-application member extending from the torque-wrench handle barrel. The force-application member is rotatable relative to the torque-wrench handle barrel about a click-pivot axis perpendicular to the first longitudinal central axis. The torque wrench additionally comprises a torque-wrench attachment coupled to the torque-wrench handle. The torque-wrench attachment comprises a chassis coupled to the torque-wrench handle barrel. The torque-wrench attachment also comprises a wrench head comprising a second longitudinal central axis and a torque axis. The wrench head is shaped to engage at least one of a fastener or a torque-application member aligned with the torque axis. The second longitudinal central axis and the torque axis have an intersection point. The torque axis of the wrench head has an adjustable angle relative to the first longitudinal central axis of the torque-wrench handle when the chassis is aligned with the first longitudinal central axis. The torque-wrench attachment additionally comprises a link, pivotally coupled to the chassis and the wrench head. The torque-wrench attachment also comprises a translating element pivotally coupled to the wrench head and linearly movable relative to the chassis. The translating element comprises a contact surface having a centroid and configured to receive a first force from the force-application member when the chassis is aligned with the first longitudinal central axis, the wrench head engages the fastener, and a second force is applied to the torque-wrench handle in an opposite direction to the first force. When the chassis is aligned with the first longitudinal central axis, the contact surface of the translating element is movable along the first longitudinal central axis of the torque-wrench handle, and a moment arm between the click-pivot axis and the centroid of the contact surface of the translating element along the first longitudinal central axis of the torque-wrench handle varies as a function of the adjustable angle between the torque axis of the wrench head and the first longitudinal central axis.
Yet another example of the present disclosure relates to a method of assembling a torque wrench. The method comprises providing a torque-wrench handle and a click-type torque-wrench mechanism. The torque-wrench handle defines a first longitudinal central axis and comprises a torque-wrench handle barrel. The click-type torque wrench mechanism comprises a force-application member extending from the torque-wrench handle barrel. The force-application member is rotatable relative to the torque-wrench handle barrel about a click-pivot axis perpendicular to the first longitudinal central axis. The method also comprises mounting a torque-wrench attachment to the torque-wrench handle. The torque-wrench attachment comprises a chassis configured to be coupled to the torque-wrench handle barrel. The torque-wrench attachment also comprises a wrench head comprising a second longitudinal central axis and a torque axis. The wrench head is shaped to engage at least one of a fastener or a torque-application member aligned with the torque axis. The second longitudinal central axis and the torque axis have an intersection point. The torque axis of the wrench head has an adjustable angle relative to the first longitudinal central axis of the torque-wrench handle when the chassis is coupled to the torque-wrench handle barrel and aligned with the first longitudinal central axis. The torque-wrench attachment additionally comprises a link pivotally coupled to the chassis and the wrench head. The torque-wrench attachment also comprises a translating element pivotally coupled to the wrench head and linearly movable relative to the chassis. The translating element comprises a contact surface having a centroid and configured to receive a first force from the force-application member when the chassis is coupled to the torque-wrench handle barrel and aligned with the first longitudinal central axis, the wrench head engages the fastener, and a second force is applied to the torque-wrench handle in an opposite direction to the first force. When the chassis is pivotally coupled to the torque-wrench handle barrel and aligned with the first longitudinal central axis, the contact surface of the translating element is movable along the first longitudinal central axis of the torque-wrench handle, and a moment arm between the click-pivot axis and the centroid of the contact surface of the translating element along the first longitudinal central axis of the torque-wrench handle varies as a function of the adjustable angle between the torque axis of the wrench head and the first longitudinal central axis.
Having thus described examples of the present disclosure in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein like reference characters designate the same or similar parts throughout the several views, and wherein:
In
In
In the following description, numerous specific details are set forth to provide a thorough understanding of the disclosed concepts, which may be practiced without some or all of these particulars. In other instances, details of known devices and/or processes have been omitted to avoid unnecessarily obscuring the disclosure. While some concepts will be described in conjunction with specific examples, it will be understood that these examples are not intended to be limiting.
Unless otherwise indicated, the terms “first,” “second,” etc. are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the items to which these terms refer. Moreover, reference to, e.g., a “second” item does not require or preclude the existence of, e.g., a “first” or lower-numbered item, and/or, e.g., a “third” or higher-numbered item.
Reference herein to “one example” means that one or more feature, structure, or characteristic described in connection with the example is included in at least one implementation. The phrase “one example” in various places in the specification may or may not be referring to the same example.
Illustrative, non-exhaustive examples, which may or may not be claimed, of the subject matter according the present disclosure are provided below.
Referring e.g., to
Variation of a length of moment arm 180 as a function of adjustable angle 190 provides for variation of the force imparted to torque-wrench handle 200 as a function of adjustable angle 190, thereby accounting, at least to some degree, for variations in torque applied via wrench head 110 due to variations in adjustable angle 190 for a given setting of torque-wrench handle 200. For example, as adjustable angle 190 increases (e.g., torque axis 112 moves away from perpendicular with respect to first longitudinal central axis 202), moment arm 180 in the illustrated example decreases, thus allowing for a larger force (compared to when torque axis 112 is perpendicular to first longitudinal central axis 202) to be applied to torque-wrench handle 200 before exceeding a limiting setting of torque-wrench handle 200 (e.g., not causing a click of a click-type torque wrench handle). Consistency of torque applied via wrench head 110 before reaching a limit or setting of a torque wrench is provided over a range of angles between wrench head 110 and torque-wrench handle 200. Variations in torque applied to a fastener as a function of adjustable angle are compensated for automatically, without requiring calculation or adjustment by an operator, thereby saving installation time and reducing the potential for operator error.
As used herein, a longitudinal central axis may be understood as an axis passing through the geometric centroid of each cross-section of an object. It may be noted that the cross-section need not necessarily be circular. As used herein, centroid 602 may be understood as a point through which a moment arm (e.g., moment arm 180) acts to transfer forces (e.g., between wrench head 110 and torque-wrench handle 200). It may be noted that centroid 602 may be located on an exterior surface of contact surface 162 and/or at a distance from an exterior surface (e.g., in an interior of the translating element 160) A first force is applied from force-application member 210 via centroid 602 to wrench head 110 to provide a torque for turning fastener 500 when a second force (e.g., a manual force applied by an operator) is applied to torque-wrench handle 200. Torque wrench 300 includes an internal mechanism that limits or sets the amount of force that may be transferred to wrench head 110 via force-application member 210. In various examples, the limit or setting may be indicated by a “click” that may be audibly and/or tactilely observable by an operator. Click-type torque wrench mechanisms as known in the art may be utilized in various examples to set or limit an amount of force transferred from torque-wrench handle 200. (See, e.g.,
It may be noted that the illustrated arrangement provides one example of interconnections of various components of a torque wrench to provide linear motion of translating element 160 relative to first longitudinal central axis 202; however, other arrangements or other motions paths may be utilized in various examples. In the illustrated example, torque axis 112 and second longitudinal axis 203 are perpendicular to each other; however, different angular relationships may be employed in various examples. The particular sizes and connections between various components of torque wrench 300 may be configured in particular examples to provide a desired consistency of resulting torque applied to fastener 500 at a given setting (e.g., within 5%, within 10%, or within 25%, among others) over a given operating or effective range of adjustable angle (e.g., from −45 degrees to 45 degrees, where 0 degrees corresponds to torque axis 112 being perpendicular to first longitudinal central axis 202).
Generally, fastener 500 may be a threaded fastener configured to be accepted by a threaded receiver (e.g., threaded hole, or nut) to secure two or more components together. It may be noted that wrench head 110 may be configured to grasp and/or apply a torque to a bolt head or to a nut. In some embodiments, wrench head 110 may be configured to engage torque application member 501 (see, e.g.,
Referring generally to
Translation of contact surface 162 along first longitudinal central axis 202 provides for consistent, convenient, predictable, variation of moment arm 180 (and resulting variation in force transferred via force-application member 210 of torque-wrench handle 200) as a function of adjustable angle 190 and/or relatively easy calculation of the variation of moment arm 180 as a function of adjustable angle 190 during design or configuration of torque-wrench attachment 100 (and/or design or configuration of torque wrench 300 including torque-wrench attachment 100). The force applied to torque-wrench handle 200 at varying values of adjustable angle 190 may be consistently applied over the life of torque wrench 300 in a reliable, repeated manner. Particular dimensions and/or proportions of a given torque-wrench attachment may be readily determined based on the comparatively straight forward geometry of a linearly moving contact surface along first longitudinal central axis 202.
Referring generally to
Use of end adaptor member 130 provides for convenient assembly of torque-wrench attachment 100 to torque-wrench handle 200, and/or reliable and predictable transmission of forces between torque-wrench handle 200 and wrench head 110.
Referring generally to
Use of dovetail opening 134 provided for secure and convenient assembly of end adaptor member 130 to force-application member 210. The complementary feature of force-application member 210 may be a predetermined size or shape provided during manufacture and assembly of torque-wrench handle 200. End adaptor member 130 may be coupled to force-application member 210 quickly, accurately, and conveniently via a sliding or other lateral insertion of force-application member 210 into dovetail opening 134.
Still referring generally to
Lateral portions 142 provide reliability and convenience of assembly. For example, end adaptor member 130 may be disposed between lateral portions to help maintain end adaptor member 130 at or near a desired position during sliding of force-application member 210 into dovetail opening 134 of end adaptor member 130.
Continuing to refer generally to
Disposition of bearing surface 132 on boss 131 provides for consistent and reliable transfer of force via contact surface 162. Boss 131 allows for a contact point or interaction point for transfer of force to be disposed laterally or radially outward of a longitudinal central axis while helping to resist cocking of components of torque wrench 300 during translation of translating element 160. Boss 131 may be sized and configured to withstand forces resulting from transmission of force from torque-wrench handle 200 to wrench head 110 and maintain a generally linear motion of translating element 160.
Referring generally to
Adaptor 120 provides for convenient assembly with standard or otherwise available torque wrench handles. Adaptor 120, for example, may be shaped and sized to accept a cross-section of torque-wrench handle 200. In various examples, adaptor 120 may be configured to accept torque-wrench handle 200 with a loose or sliding fit, with adaptor 120 secured to torque-wrench handle 200 via one or more of pins, fasteners, tabs, or the like.
Continuing to refer generally to
Pivotal coupling of chassis 140 to adaptor 120 allows chassis 140 to pivot with respect to torque-wrench handle 200 (e.g., second longitudinal central axis 203 may be moved from parallel with respect to first longitudinal central axis 202 to an acute angle with respect to first longitudinal central axis 202), for example, for assembly of torque-wrench adaptor 100 to torque-wrench handle 200. In the illustrated example, with chassis 140 at an initial position out of alignment with torque-wrench handle 200 (e.g., second longitudinal central axis 203 not parallel to first longitudinal central axis 202), end adaptor member 130 may be placed in a desired position within chassis 140 (e.g., between lateral portions 142). Then, chassis 140 may be pivoted into alignment with torque-wrench handle 200, with end adaptor member 130 slid on to a portion of force-application member 210 or otherwise coupled to force-application member 210. Similarly, pivoting of chassis 140 also provides for convenient disassembly (e.g., for maintenance, repair, or replacement of end adaptor member 130).
Referring generally to
Use of indexing member 191 helps position and/or maintain torque-wrench attachment 100 and torque-wrench handle 210 in fixed relationship to each other, and provides reliability and consistency in defining the spatial relationships between the various components of torque wrench 300 and determining the variation in applied forces as a function of adjustable angle 190.
Referring generally to
Securement using openings 196 and pin 198 provides for convenient mounting to a pre-existing location (e.g., torque-wrench handle 200 may be provided with pin 198 in place). Use of openings 196 and pin 198 also provides use of a location directly related to click-pivot axis 144, simplifying determination of geometric relationships between components of torque wrench 300 relevant to transmission of forces and/or variation in force transferred to torque-wrench handle 200 from wrench head 110 over a range of adjustment angle 190. In the illustrated example, ears 194 are disposed on opposite sides of torque-wrench handle 200, helping to provide for secure attachment and resistance to cocking or other misalignment during use of torque wrench 300.
Referring generally to
As adjustable angle 190 decreases (e.g., torque axis 112 moves toward perpendicular with respect to first longitudinal central axis 202), increase of moment arm 180 reduces torque applied to fastener 500 when wrench head 110 and torque axis 112 are perpendicular (or close to perpendicular) to first longitudinal central axis 202 at a setting or limitation of torque-wrench handle 200 (e.g., not causing a click of a click-type torque wrench handle), relative to when wrench head 110 and torque axis 112 are farther from perpendicular. Consistency of torque applied via wrench head 110 is provided over a range of angles between wrench head 110 and torque-wrench handle 200 for a given setting or limitation of torque-wrench handle 200.
Referring generally to
Engagement of translating element 160 with channel 189 improves guidance of translating element 160 and provides a consistent motion path for translating element 160, and helps prevents cocking or other misalignment of translating element 160 during motion resulting from pivoting of wrench head 110. Second boss 161 may be disposed on an opposite side of force-application member 210 with respect to contact surface 132.
Referring generally to
Use of predetermined relationships between the various components as set forth by example 13 help provide for convenient prediction of variation of transferred forces between torque wrench handle 200 and wrench head 110 and/or configuration of torque-wrench attachment 100 (e.g., selection of dimensions of components of torque-wrench attachment 100) to provide a desired range of applied forces over a given desired effective or operating range of adjustable angle 190.
Referring generally to
Use of predetermined relationships between the various components as set forth by examples 13 and 14 help provide for convenient prediction of variation of transferred forces between torque wrench handle 200 and wrench head 110 and/or configuration of torque-wrench attachment 100 (e.g., selection of dimensions of components of torque-wrench attachment 100) to provide a desired range of applied forces over a given desired effective or operating range of adjustable angle 190. For example, the relationships between the components may be used to determine variation of moment arms between points of force application, and consequently to determine the force at one location based on force at another location (e.g., torque that may be applied at wrench head 110 for a given setting of a torque wrench at a given angle between wrench head 110 and first longitudinal central axis 202). For example, by determining the variation in force applied to force-application member 210 as function of adjustable angle 190 over a range of adjustable angle anticipated for a given application, the appropriateness of a given design may be evaluated and adjusted as necessary.
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Use of predetermined relationships between the various components as set forth by examples 15-20 help provide for convenient prediction of variation of transferred forces between torque wrench handle 200 and wrench head 110 and/or configuration of torque-wrench attachment 100 (e.g., selection of dimensions of components of torque-wrench attachment 100) to provide a desired range of applied forces over a given desired effective or operating range of adjustable angle 190.
Referring e.g., to
Variation of a length of moment arm 180 as a function of adjustable angle 190 provides for variation of the force imparted to torque-wrench handle 200 as a function of adjustable angle 190, thereby accounting, at least to some degree, for variations in torque applied via wrench head 110 due to variations in adjustable angle 190 for a given setting of torque-wrench handle 200. For example, as adjustable angle 190 increases (e.g., torque axis 112 moves away from perpendicular with respect to first longitudinal central axis 202), moment arm 180 in the illustrated example decreases, thus allowing for a larger force (compared to when torque axis 112 is perpendicular to first longitudinal central axis 202) to be applied to torque-wrench handle 200 before exceeding a limiting setting of torque-wrench handle 200 (e.g., not causing a click of a click-type torque wrench handle). Consistency of torque applied via wrench head 110 before reaching a limit or setting of a torque wrench is provided over a range of angles between wrench head 110 and torque-wrench handle 200.
Click-type torque-wrench mechanism 220 may be configured similar to conventional designs known in the art.
Referring generally to
Translation of contact surface 162 along first longitudinal central axis 202 provides for consistent, convenient, predictable, variation of moment arm 180 (and resulting variation in force transferred via force-application member 210 of torque-wrench handle 200) as a function of adjustable angle 190 and/or relatively easy calculation of the variation of moment arm 180 as a function of adjustable angle 190 during design or configuration of torque-wrench attachment 100 (and/or design or configuration of torque wrench 300 including torque-wrench attachment 100). The force applied to torque-wrench handle 200 at varying values of adjustable angle 190 may be consistently applied over the life of torque wrench 300 in a reliable, repeated manner. Particular dimensions and/or proportions of a given torque-wrench attachment may be readily determined based on the comparatively straight forward geometry of a linearly moving contact surface along first longitudinal central axis 202.
Referring generally to
Use of end adaptor member 130 provides for convenient assembly of torque-wrench attachment 100 to torque-wrench handle 200, and/or reliable and predictable transmission of forces between torque-wrench handle 200 and wrench head 110.
Referring generally to
Use of dovetail opening 134 provided for secure and convenient assembly of end adaptor member 130 to force-application member 210. The complementary feature of force-application member 210 may be a predetermined size or shape provided during manufacture and assembly of torque-wrench handle 200. End adaptor member 130 may be coupled to force-application member 210 quickly, accurately, and conveniently via a sliding or other lateral insertion of force-application member 210 into dovetail opening 134.
Still referring generally to
Lateral portions 142 provide reliability and convenience of assembly. For example, end adaptor member 130 may be disposed between lateral portions to help maintain end adaptor member 130 at or near a desired position during sliding of force-application member 210 into dovetail opening 134 of end adaptor member 130.
Referring generally to
Adaptor 120 provides for convenient assembly with standard or otherwise available torque wrench handles. Adaptor 120, for example, may be shaped and sized to accept a cross-section of torque-wrench handle 200. In various examples, adaptor 120 may be configured to accept torque-wrench handle 200 with a loose or sliding fit, with adaptor 120 secured to torque-wrench handle 200 via one or more of pins, fasteners, tabs, or the like.
Referring generally to
Use of predetermined relationships between the various components as set forth by example 27 help provide for convenient prediction of variation of transferred forces between torque wrench handle 200 and wrench head 110 and/or configuration of torque-wrench attachment 100 (e.g., selection of dimensions of components of torque-wrench attachment 100) to provide a desired range of applied forces over a given desired effective or operating range of adjustable angle 190.
Referring generally to
Use of predetermined relationships between the various components as set forth by examples 27 and 28 help provide for convenient prediction of variation of transferred forces between torque wrench handle 200 and wrench head 110 and/or configuration of torque-wrench attachment 100 (e.g., selection of dimensions of components of torque-wrench attachment 100) to provide a desired range of applied forces over a given desired effective or operating range of adjustable angle 190. For example, the relationships between the components may be used to determine variation of moment arms between points of force application, and consequently to determine the force at one location based on force at another location (e.g., torque that may be applied at wrench head 110 for a given setting of a torque wrench at a given angle between wrench head 110 and first longitudinal central axis 202). For example, by determining the variation in force applied to force-application member 210 as function of adjustable angle 190 over a range of adjustable angle anticipated for a given application, the appropriateness of a given design may be evaluated and adjusted as necessary.
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Use of predetermined relationships between the various component as set forth by examples 29-34 help provide for convenient prediction of variation of transferred forces between torque wrench handle 200 and wrench head 110 and/or configuration of torque-wrench attachment 100 (e.g., selection of dimensions of components of torque-wrench attachment 100) to provide a desired range of applied forces over a given desired effective or operating range of adjustable angle 190.
Referring generally to e.g.
Variation of a length of moment arm 180 as a function of adjustable angle 190 provides for variation of the force imparted to torque-wrench handle 200 as a function of adjustable angle 190, thereby accounting, at least to some degree, for variations in torque applied via wrench head 110 due to variations in adjustable angle 190 for a given setting of torque-wrench handle 200. For example, as adjustable angle 190 increases (e.g., torque axis 112 moves away from perpendicular with respect to first longitudinal central axis 202), moment arm 180 in the illustrated example decreases, thus allowing for a larger force (compared to when torque axis 112 is perpendicular to first longitudinal central axis 202) to be applied to torque-wrench handle 200 before exceeding a limiting setting of torque-wrench handle 200 (e.g., not causing a click of a click-type torque wrench handle). Consistency of torque applied via wrench head 110 before reaching a limit or setting of a torque wrench is provided over a range of angles between wrench head 110 and torque-wrench handle 200.
To mount torque-wrench adaptor 100 to torque-wrench handle 200, chassis 140 of torque-wrench adaptor 100 may be coupled to torque-wrench handle barrel 204. For example, chassis 140 may have coupled thereto an adaptor 120 sized to accept torque-wrench handle barrel 204. Adaptor 120 may be secured to torque-wrench handle barrel 204 using one or more of fasteners, pins, tabs, slots, or the like. Further, one or more of chassis 140, adaptor 120, or torque-wrench handle barrel 204 may include one or more visual cues and/or mechanical features configured to help align and mount torque-wrench handle adaptor 200 and torque-wrench handle 200 in a predetermined spatial relationship with respect to each other. For example, torque-wrench handle 200 may have one or more pins or other protrusions extending from click-pivot axis 144 or at a predetermined distance from click-pivot axis 144, and adaptor 120 may have one or more corresponding openings configured to accept the one or more pins or other protrusions to guide and align assembly of torque wrench 300.
Continuing to refer generally to
Use of end adaptor member 130 provides for convenient assembly of torque-wrench attachment 100 to torque-wrench handle 200, and/or reliable and predictable transmission of forces between torque-wrench handle 200 and wrench head 110. Lateral portions 142 provide reliability and convenience of assembly. For example, end adaptor member 130 may be disposed between lateral portions to help maintain end adaptor member 130 at or near a desired position during sliding of force-application member 210 into dovetail opening 134 of end adaptor member 130.
Continuing to refer generally to
Pivoting of chassis 140 helps provide convenient assembly and/or disassembly of end adaptor member 130 and force-application member 210. For example, in some examples, chassis 140 may be pivoted out of the way for improved access to force-application member 210. In the depicted examples, chassis 140 may be initially pivoted out of alignment relative to torque-wrench handle 200, end adaptor member 130 may be disposed within chassis 140, and then chassis 140, with end adaptor member 130 disposed therein, may be pivoted back into alignment with torque-wrench handle 200, with dovetail opening 134 of end adaptor member 130 accepting the complementary feature of force-application member 210 to couple end adaptor 130 to force-application member 210 as chassis 140 is pivoted back into alignment with torque-wrench handle 200. As used herein, chassis 140 may be understood to be in alignment with torque-wrench handle 200 when a central longitudinal axis of chassis 140 is aligned with first central longitudinal axis of torque-wrench handle 200.
Continuing to refer generally to
Use of indexing member 191 helps position and/or maintain torque-wrench attachment 100 and torque-wrench handle 210 in fixed relationship to each other, and provides reliability and consistency in defining the spatial relationships between the various components of torque wrench 300 and determining the variation in applied forces as a function of adjustable angle 190. It may be noted that mounting location 192 may be at or along click-pivot axis 144 such that the predetermined distance of mounting location 192 from click-pivot axis 144 is zero. Alternatively, the predetermined distance may be greater than zero. For example, mounting location 192 may be disposed at a point of contact, an end point, or other reference point corresponding to interaction between torque-wrench handle 200 and torque-wrench attachment 100. One or more of detents, stops, pins and openings, slots and tabs, keyed openings, or the like may be utilized for consistent placement and/or maintenance of components of torque-wrench attachment 100 and torque-wrench handle 200 in fixed relation to each other.
Continuing to refer generally to
Securement using openings 196 and pin 198 provides for convenient mounting to a pre-existing location (e.g., torque-wrench handle 200 may be provided with pin 198 in place). Use of openings 196 and pin 198 also provides use of a location directly related to click-pivot axis 144, simplifying determination of geometric relationships between components of torque wrench 300 relevant to transmission of forces and/or variation in force transferred to torque-wrench handle 200 from wrench head 110 over a range of adjustment angle 190. In the illustrated example, ears 194 are disposed on opposite sides of torque-wrench handle 200, helping to provide for secure attachment and resistance to cocking or other misalignment during use of torque wrench 300.
Examples of the present disclosure may be described in the context of aircraft manufacturing and service method 1100 as shown in
Each of the processes of illustrative method 1100 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors; a third party may include, without limitation, any number of vendors, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
Apparatus(es) and method(s) shown or described herein may be employed during any one or more of the stages of the manufacturing and service method 1100. For example, components or subassemblies corresponding to component and subassembly manufacturing 1108 may be fabricated or manufactured in a manner similar to components or subassemblies produced while aircraft 1102 is in service. Also, one or more examples of the apparatus(es), method(s), or combination thereof may be utilized during production stages 1108 and 1110, for example, by substantially expediting assembly of or reducing the cost of aircraft 1102. Similarly, one or more examples of the apparatus or method realizations, or a combination thereof, may be utilized, for example and without limitation, while aircraft 1102 is in service, e.g., maintenance and service stage (block 1116).
Different examples of the apparatus(es) and method(s) disclosed herein include a variety of components, features, and functionalities. It should be understood that the various examples of the apparatus(es) and method(s) disclosed herein may include any of the components, features, and functionalities of any of the other examples of the apparatus(es) and method(s) disclosed herein in any combination, and all of such possibilities are intended to be within the spirit and scope of the present disclosure.
Many modifications of examples set forth herein will come to mind to one skilled in the art to which the present disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the present disclosure is not to be limited to the specific examples presented and that modifications and other examples are intended to be included within the scope of the appended claims. Moreover, although the foregoing description and the associated drawings describe examples of the present disclosure in the context of certain illustrative combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative implementations without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1574865 | Boykin, Jr. | Mar 1926 | A |
3964351 | Tsuji | Jun 1976 | A |
4732062 | Grabovac et al. | Mar 1988 | A |
6119562 | Jenkins | Sep 2000 | A |
6162053 | Hollander | Dec 2000 | A |
7806027 | Gao | Oct 2010 | B1 |
8806993 | Coffland | Aug 2014 | B2 |
20070295174 | Hsieh | Dec 2007 | A1 |
20110185862 | Coffland | Aug 2011 | A1 |
20110185863 | Hsieh | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
91999 | Nov 1954 | DE |
925458 | Mar 1955 | DE |
1028544 | May 1953 | FR |
1034602 | Jul 1953 | FR |
2584330 | Jan 1987 | FR |
02070208 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20160207181 A1 | Jul 2016 | US |